Dynamics, Ground States, and Elementary Excitations of Quantum Many-Body Systems
量子多体系统的动力学、基态和基本激发
基本信息
- 批准号:1515850
- 负责人:
- 金额:$ 37.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Miniaturization of electronics has been the driving force of the ever increasing power of computers, whether expressed as units of performance per unit of volume, or per unit of energy consumed, or per dollar expended. Miniaturization will reach its ultimate limit when the size of individual components in electronic devices approaches the size of a single atom. Unless we succeed in implementing a new paradigm of computation, called Quantum Computation, the growth in computational efficiency, which is often referred to as Moore's Law, will come to an end. One of the most promising research directions to implement the ideas of Quantum Computation is the development of topological materials. Topological materials have the capacity to store quantum information, which under ordinary conditions is subject to fast deterioration due to a process called decoherence. In this project the PI and his collaborators will study mathematical models of topological materials. The main goal is to better understand the factors that determine the robustness of a quantum memory based on topological materials.The project will address three questions that are crucial for the possible application of topologically ordered materials to the development of reliable quantum computation devices. First, what determines the rate with which the spectral gap at critical points vanishes as the system size increases? Second, under what conditions is the anyonic excitation spectrum of systems with topologically ordered ground states stable under sufficiently small perturbations? Third, what is the effect of randomness (such as occurs in doped materials) on the structure of the ground state and low-lying excitations of such systems? The project will also investigate the dynamical behavior of the model systems. Questions regarding the energy of low-lying excitations above the ground state, i.e., the spectral gap, are central to many issues in quantum many-body physics. The goal of the project is to significantly extend the range of applicability of methods to estimate the spectral gap in at least two directions. One is the situation where the gap vanishes with increasing system size (critical points or regions). The second aim is to develop methods to analyze the gap of systems in two or more dimensions, which has so far only been achieved in a few special cases. Further, in the case of disordered systems the spectral gap may close, but a so-called mobility gap may play a very similar role and another goal of the project is to extend current methods to situations where the spectral gap is replaced by a mobility gap. Techniques from representation theory, analysis, and probability will be used when available and new methods will be developed when needed.
电子设备的小型化一直是计算机不断增长的能力的驱动力,无论是表示为每单位体积的性能单位,还是每单位能量消耗,还是每美元花费。当电子设备中单个元件的尺寸接近单个原子的大小时,小型化将达到极限。除非我们成功地实现一种新的计算范式,称为量子计算,否则计算效率的增长,通常被称为摩尔定律,将走到尽头。实现量子计算思想的最有前途的研究方向之一是拓扑材料的发展。拓扑材料具有存储量子信息的能力,在普通条件下,由于一种称为退相干的过程,量子信息会迅速退化。在这个项目中,PI和他的合作者将研究拓扑材料的数学模型。主要目标是更好地理解决定基于拓扑材料的量子存储器鲁棒性的因素。该项目将解决三个问题,这些问题对于拓扑有序材料在可靠量子计算设备开发中的可能应用至关重要。首先,当系统尺寸增加时,什么决定了临界点处的谱隙消失的速率?第二,在什么条件下具有拓扑有序基态的系统的任意子激发谱在足够小的扰动下是稳定的?第三,随机性(如掺杂材料中发生的随机性)对基态结构和这种系统的低激发态有什么影响?该项目还将研究模型系统的动力学行为。关于基态以上的低激发能量的问题,即,光谱间隙是量子多体物理学中许多问题的核心。该项目的目标是显着扩展方法的适用范围,以估计至少两个方向的频谱间隙。一种是差距随系统尺寸(临界点或临界区域)增大而消失的情况。第二个目标是发展方法来分析系统的差距在两个或两个以上的层面,这是迄今为止只有在少数特殊情况下实现。此外,在无序系统的情况下,频谱间隙可能会关闭,但所谓的迁移率间隙可能会发挥非常相似的作用,该项目的另一个目标是将当前的方法扩展到频谱间隙被迁移率间隙取代的情况。从表示理论,分析和概率的技术将被使用时,将在需要时开发新的方法。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stability of gapped ground state phases of spins and fermions in one dimension
一维自旋和费米子带隙基态相的稳定性
- DOI:10.1063/1.5036751
- 发表时间:2018
- 期刊:
- 影响因子:1.3
- 作者:Moon, Alvin;Nachtergaele, Bruno
- 通讯作者:Nachtergaele, Bruno
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bruno Nachtergaele其他文献
Non-Equilibrium States of a Photon Cavity Pumped by an Atomic Beam
- DOI:
10.1007/s00023-013-0247-7 - 发表时间:
2013-03-30 - 期刊:
- 影响因子:1.300
- 作者:
Bruno Nachtergaele;Anna Vershynina;Valentin A. Zagrebnov - 通讯作者:
Valentin A. Zagrebnov
A Multi-Dimensional Lieb-Schultz-Mattis Theorem
- DOI:
10.1007/s00220-007-0342-z - 发表时间:
2007-09-09 - 期刊:
- 影响因子:2.600
- 作者:
Bruno Nachtergaele;Robert Sims - 通讯作者:
Robert Sims
Droplet States in the XXZ Heisenberg Chain
- DOI:
10.1007/s002200100421 - 发表时间:
2001-05-01 - 期刊:
- 影响因子:2.600
- 作者:
Bruno Nachtergaele;Shannon Starr - 通讯作者:
Shannon Starr
Product Vacua with Boundary States and the Classification of Gapped Phases
- DOI:
10.1007/s00220-014-2025-x - 发表时间:
2014-03-19 - 期刊:
- 影响因子:2.600
- 作者:
Sven Bachmann;Bruno Nachtergaele - 通讯作者:
Bruno Nachtergaele
The complete set of in(cid:12)nite volume ground states for Kitaev’s abelian quantum double models
Kitaev 的阿贝尔量子双模型的完整 in(cid:12)nite 体积基态集
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Matthew Cha;Pieter Naaijkens;Bruno Nachtergaele - 通讯作者:
Bruno Nachtergaele
Bruno Nachtergaele的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bruno Nachtergaele', 18)}}的其他基金
Gapped ground state phases of quantum lattice systems
量子晶格系统的带隙基态相
- 批准号:
2108390 - 财政年份:2021
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Workshops on Mathematical Challenges in Many-Body Physics and Quantum Information
多体物理和量子信息中的数学挑战研讨会
- 批准号:
1838991 - 财政年份:2018
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Quasi-Locality Properties of Quantum Many-Body Dynamics and Applications
量子多体动力学的拟局域性性质及其应用
- 批准号:
1813149 - 财政年份:2018
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Mathematical Challenges in Many-Body Physics and Quantum Information: CRM Thematic Program.
多体物理和量子信息中的数学挑战:CRM 主题计划。
- 批准号:
1813177 - 财政年份:2018
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Dynamics and Ground States in Quantum Statistical Mechanics
量子统计力学中的动力学和基态
- 批准号:
1009502 - 财政年份:2010
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
XVIth International Congress on Mathematical Physics, August 1 -- 8, 2009, Prague, Czech Republic
第十六届国际数学物理大会,2009 年 8 月 1 日至 8 日,捷克共和国布拉格
- 批准号:
0855460 - 财政年份:2009
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Quantum SpinSystems. Theory and Applications in Quantum Computation
FRG:合作研究:量子自旋系统。
- 批准号:
0757581 - 财政年份:2008
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
U.S.-Brazil Workshop: XVth International Congress on Mathematical Physics, August 5 - August 11, 2006, Rio de Janeiro, Brazil
美国-巴西研讨会:第十五届国际数学物理大会,2006 年 8 月 5 日至 11 日,巴西里约热内卢
- 批准号:
0555031 - 财政年份:2006
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Equilibrium and Non-Equilibrium Statistical Mechanics
平衡和非平衡统计力学
- 批准号:
0605342 - 财政年份:2006
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
XIV International Congress on Mathematical Physics; July 28 - August 2, 2003; Lisbon, Portugal; Travel Funds
第十四届国际数学物理大会;
- 批准号:
0306887 - 财政年份:2003
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
相似国自然基金
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
Study on correlation between exotic ground states and valence instabilities in Eu-based compounds
Eu基化合物奇异基态与价态不稳定性的相关性研究
- 批准号:
23K03304 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Digital Quantum Simulations of Ground States and Dynamics: Analysis and Realizations
基态和动力学的数字量子模拟:分析和实现
- 批准号:
2310614 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Novel ground states and excitations in quantum spin liquids
量子自旋液体中的新基态和激发
- 批准号:
2888447 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Studentship
Ultrafast Dynamics Occurring in the Ground States of Transition Metal Ccmplexes
过渡金属复合物基态中发生的超快动力学
- 批准号:
2153757 - 财政年份:2022
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
Local correlation approaches for ground and excited states of periodic systems
周期系统基态和激发态的局部相关方法
- 批准号:
RGPIN-2018-04187 - 财政年份:2022
- 资助金额:
$ 37.5万 - 项目类别:
Discovery Grants Program - Individual
New Quantum Materials with Spin Liquid Ground States
具有自旋液态基态的新型量子材料
- 批准号:
580938-2022 - 财政年份:2022
- 资助金额:
$ 37.5万 - 项目类别:
Alliance Grants
Exotic Magnetic Ground States and Ground State Selection in Quantum Materials
量子材料中的奇异磁基态和基态选择
- 批准号:
RGPIN-2019-07084 - 财政年份:2022
- 资助金额:
$ 37.5万 - 项目类别:
Discovery Grants Program - Individual
tuning between ground states and instabilities in layered perovskite-related materials
层状钙钛矿相关材料的基态和不稳定性之间的调节
- 批准号:
2569785 - 财政年份:2021
- 资助金额:
$ 37.5万 - 项目类别:
Studentship
EAGER: QSA: Approximating the Ground States of Non-Stoquastic Hamiltonians Using the Variational Quantum Eigensolver
EAGER:QSA:使用变分量子本征求解器逼近非随机哈密顿量的基态
- 批准号:
2037755 - 财政年份:2021
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Ground states of generalized Kitaev model on a honeycomb lattice
蜂窝晶格上广义 Kitaev 模型的基态
- 批准号:
21K03390 - 财政年份:2021
- 资助金额:
$ 37.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)