Quasi-Locality Properties of Quantum Many-Body Dynamics and Applications

量子多体动力学的拟局域性性质及其应用

基本信息

  • 批准号:
    1813149
  • 负责人:
  • 金额:
    $ 32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

A variety of fundamental phenomena can be modeled mathematically as systems of many interacting components. The problem of analyzing the dynamics of any such system becomes tractable if we recognize that individual components interact primarily with only a small number of "nearby" components. This is referred to as a quasi-locality property of the system. At the microscopic level, the basic laws of quantum physics govern the dynamics of systems consisting of atoms and elementary particles. Much of the recent progress made in understanding the dynamics of such systems has been through the mathematical analysis of their quasi-locality properties. In this project, new mathematical advances exploiting the quasi-locality properties of quantum systems will be used to obtain a better understanding of the physical systems of interest for new quantum technologies. In particular, new methods will be developed to allow more precise modeling of the quantum systems employed for quantum information processing and computation.Quantum many-body systems at low temperatures describe a fascinating array of behavior generically described as quantum states of matter. This project will deepen the mathematical understanding of so-called gapped phases. Systems in a gapped phase have one or more ground states and a spectral gap for excitations in the bulk. One important goal of the project is to understand how the excitation spectrum of such systems can be described as a system of quasi-particles. In particular for systems in two space dimensions these quasi-particles may be anyons, instead of the more commonly encountered fermions and bosons. Techniques will be developed, based on the fundamental quasi-locality properties of the dynamics, to prove the existence of anyons, their relation to topological order in the ground state(s), and their dynamical properties. These problems are motivated by the desire to learn more about the quantum states of matter that occur in condensed matter systems, and to understand better the potential of topologically ordered materials in applications such as quantum memory and other quantum devices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
各种基本现象都可以用数学方法模拟成由许多相互作用的成分组成的系统。如果我们认识到单个组分主要只与少数“附近”组分相互作用,那么分析任何此类系统的动力学问题就变得容易处理了。这被称为系统的准定域性。在微观层面上,量子物理学的基本定律支配着由原子和基本粒子组成的系统的动力学。最近在理解这类系统的动力学方面取得的许多进展都是通过对它们的准定域性进行数学分析。在这个项目中,利用量子系统的准局域性的新数学进展将被用来更好地理解新量子技术感兴趣的物理系统。特别是,将开发新的方法,使量子信息处理和计算所采用的量子系统的更精确的建模。低温下的量子多体系统描述了一系列迷人的行为,一般被描述为物质的量子态。该项目将加深对所谓的间隙相的数学理解。处于带隙相位的系统具有一个或多个基态和用于体中激发的光谱间隙。该项目的一个重要目标是了解如何将这种系统的激发光谱描述为准粒子系统。特别是对于两个空间维度的系统,这些准粒子可能是任意子,而不是更常见的费米子和玻色子。基于动力学的基本准定域性,我们将开发技术来证明任意子的存在,它们与基态拓扑序的关系,以及它们的动力学性质。这些问题的动机是希望更多地了解凝聚态系统中物质的量子态,并更好地了解拓扑有序材料在量子存储器和其他量子设备等应用中的潜力。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dispersive toric code model with fusion and defusion
融合与解离的色散环面码模型
  • DOI:
    10.1103/physrevb.101.115105
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Nachtergaele, Bruno;Sherman, Nicholas E.
  • 通讯作者:
    Sherman, Nicholas E.
Low-complexity eigenstates of a ν = 1/3 fractional quantum Hall system
δ = 1/3 分数量子霍尔系统的低复杂性本征态
Spectral Gaps and Incompressibility in a $${\varvec{\nu }}$$ = 1/3 Fractional Quantum Hall System
$${varvec{ u }}$$=1/3 分数量子霍尔系统中的光谱间隙和不可压缩性
  • DOI:
    10.1007/s00220-021-03997-0
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Nachtergaele, Bruno;Warzel, Simone;Young, Amanda
  • 通讯作者:
    Young, Amanda
Automorphic equivalence within gapped phases in the bulk
本体中有间隙相内的自守等价
  • DOI:
    10.1016/j.jfa.2019.108422
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Moon, Alvin;Ogata, Yoshiko
  • 通讯作者:
    Ogata, Yoshiko
Quasi-Locality Bounds for Quantum Lattice Systems. Part II. Perturbations of Frustration-Free Spin Models with Gapped Ground States
  • DOI:
    10.1007/s00023-021-01086-5
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Nachtergaele;Robert Sims;Amanda Young
  • 通讯作者:
    B. Nachtergaele;Robert Sims;Amanda Young
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bruno Nachtergaele其他文献

Non-Equilibrium States of a Photon Cavity Pumped by an Atomic Beam
  • DOI:
    10.1007/s00023-013-0247-7
  • 发表时间:
    2013-03-30
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Bruno Nachtergaele;Anna Vershynina;Valentin A. Zagrebnov
  • 通讯作者:
    Valentin A. Zagrebnov
A Multi-Dimensional Lieb-Schultz-Mattis Theorem
Droplet States in the XXZ Heisenberg Chain
Product Vacua with Boundary States and the Classification of Gapped Phases
  • DOI:
    10.1007/s00220-014-2025-x
  • 发表时间:
    2014-03-19
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Sven Bachmann;Bruno Nachtergaele
  • 通讯作者:
    Bruno Nachtergaele
The complete set of in(cid:12)nite volume ground states for Kitaev’s abelian quantum double models
Kitaev 的阿贝尔量子双模型的完整 in(cid:12)nite 体积基态集
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matthew Cha;Pieter Naaijkens;Bruno Nachtergaele
  • 通讯作者:
    Bruno Nachtergaele

Bruno Nachtergaele的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bruno Nachtergaele', 18)}}的其他基金

Gapped ground state phases of quantum lattice systems
量子晶格系统的带隙基态相
  • 批准号:
    2108390
  • 财政年份:
    2021
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Workshops on Mathematical Challenges in Many-Body Physics and Quantum Information
多体物理和量子信息中的数学挑战研讨会
  • 批准号:
    1838991
  • 财政年份:
    2018
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Mathematical Challenges in Many-Body Physics and Quantum Information: CRM Thematic Program.
多体物理和量子信息中的数学挑战:CRM 主题计划。
  • 批准号:
    1813177
  • 财政年份:
    2018
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Dynamics, Ground States, and Elementary Excitations of Quantum Many-Body Systems
量子多体系统的动力学、基态和基本激发
  • 批准号:
    1515850
  • 财政年份:
    2015
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Dynamics and Ground States in Quantum Statistical Mechanics
量子统计力学中的动力学和基态
  • 批准号:
    1009502
  • 财政年份:
    2010
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
XVIth International Congress on Mathematical Physics, August 1 -- 8, 2009, Prague, Czech Republic
第十六届国际数学物理大会,2009 年 8 月 1 日至 8 日,捷克共和国布拉格
  • 批准号:
    0855460
  • 财政年份:
    2009
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Quantum SpinSystems. Theory and Applications in Quantum Computation
FRG:合作研究:量子自旋系统。
  • 批准号:
    0757581
  • 财政年份:
    2008
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
U.S.-Brazil Workshop: XVth International Congress on Mathematical Physics, August 5 - August 11, 2006, Rio de Janeiro, Brazil
美国-巴西研讨会:第十五届国际数学物理大会,2006 年 8 月 5 日至 11 日,巴西里约热内卢
  • 批准号:
    0555031
  • 财政年份:
    2006
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Equilibrium and Non-Equilibrium Statistical Mechanics
平衡和非平衡统计力学
  • 批准号:
    0605342
  • 财政年份:
    2006
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant
XIV International Congress on Mathematical Physics; July 28 - August 2, 2003; Lisbon, Portugal; Travel Funds
第十四届国际数学物理大会;
  • 批准号:
    0306887
  • 财政年份:
    2003
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Structure Exploiting Multi-Agent Reinforcement Learning for Large Scale Networked Systems: Locality and Beyond
职业:为大规模网络系统利用多智能体强化学习的结构:局部性及其他
  • 批准号:
    2339112
  • 财政年份:
    2024
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant
Quantum non-locality with mass-entangled metastable helium atoms atoms
质量纠缠亚稳态氦原子的量子非局域性
  • 批准号:
    DP240101346
  • 财政年份:
    2024
  • 资助金额:
    $ 32万
  • 项目类别:
    Discovery Projects
Building heritage infrastructure network: community, locality, and materiality in the museum storeroom
建设遗产基础设施网络:社区、地方性和博物馆储藏室的物质性
  • 批准号:
    AH/X010775/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32万
  • 项目类别:
    Research Grant
Locality identification of volcanic rock artifacts excavated from the Teotihuacan site by archaeological scientific analysis and LiDAR survey
通过考古科学分析和激光雷达调查对特奥蒂瓦坎遗址出土的火山岩文物进行地点识别
  • 批准号:
    23K18710
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Collaborative Research: SHF: Small: Reimagining Communication Bottlenecks in GNN Acceleration through Collaborative Locality Enhancement and Compression Co-Design
协作研究:SHF:小型:通过协作局部性增强和压缩协同设计重新想象 GNN 加速中的通信瓶颈
  • 批准号:
    2326494
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Reimagining Communication Bottlenecks in GNN Acceleration through Collaborative Locality Enhancement and Compression Co-Design
协作研究:SHF:小型:通过协作局部性增强和压缩协同设计重新想象 GNN 加速中的通信瓶颈
  • 批准号:
    2326495
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Locality in Error-Correcting Codes
纠错码中的局部性
  • 批准号:
    RGPIN-2022-04658
  • 财政年份:
    2022
  • 资助金额:
    $ 32万
  • 项目类别:
    Discovery Grants Program - Individual
Environmental sustainability and economic cooperation in the longue duree: A comparative approach to locality, history, and development
长期环境可持续性与经济合作:地方性、历史和发展的比较方法
  • 批准号:
    ES/W011301/1
  • 财政年份:
    2022
  • 资助金额:
    $ 32万
  • 项目类别:
    Research Grant
Data locality for sparse matrices via advanced optimisations in large-scale scientific programs
通过大规模科学项目中的高级优化实现稀疏矩阵的数据局部性
  • 批准号:
    22K17900
  • 财政年份:
    2022
  • 资助金额:
    $ 32万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Universality and locality in Micronesian Englishes: Comparative analyses across British and American (ex-)colonies
密克罗尼西亚英语的普遍性和地方性:英国和美国(前)殖民地的比较分析
  • 批准号:
    22H00655
  • 财政年份:
    2022
  • 资助金额:
    $ 32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了