Random Fractals and Harmonic Measure
随机分形和谐波测量
基本信息
- 批准号:0758492
- 负责人:
- 金额:$ 12.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-08-15 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project focuses on the geometric properties of harmonic measure and properties of conformal mappings that are related to this classical conformal invariant. Harmonic measure is a fundamental object in complex analysis, and its multifractal structure provides an appropriate framework in which to describe the conformal geometry of sets in the complex plane. It is well known that harmonic measure exhibits its extremal behavior in domains that are bounded by fractal sets (i.e., sets of nonintegral Hausdorff dimension). Experience has shown that in this context it is more productive to work with random fractals than with deterministic ones. A motivating reason for doing so is that it allows one to bring to bear on problems a wide range of powerful probabilistic and analytic tools. There are a number of classes of random fractals that arise in physics as scaling limits of lattice models and that simulate real physical phenomena. Study of the multifractal structure of harmonic measure on such random fractals may help to solve some longstanding problems in geometric function theory -- or at least to improve significantly our understanding of them. The research will also shed new light on the linkages between complex analysis and theoretical physics. The project is closely related to multifractal analysis, an interdisciplinary subject that lies on the border between mathematics and physics. It emphasizes interaction between complex analysis, probability theory, and statistical physics. All these areas can benefit from this project. For example, some of the results will provide a deeper understanding of several important models from statistical physics. Moreover, certain results in this area have a direct connection to engineering.
本项目主要研究调和测度的几何性质以及与调和测度相关的共形映射的性质。调和测度是复分析中的一个基本对象,它的多重分形结构为描述复平面上集合的共形几何提供了一个合适的框架。众所周知,调和测度在以分形集为界的域中表现出极值行为(即,非整数Hausdorff维数)。经验表明,在这种情况下,使用随机分形比使用确定性分形更有效。这样做的一个动机是,它允许人们在问题上使用广泛的强大的概率和分析工具。在物理学中,有许多随机分形作为晶格模型的尺度极限而出现,它们模拟了真实的物理现象。研究这类随机分形上调和测度的多重分形结构,可能有助于解决几何函数论中一些长期存在的问题--或者至少可以大大提高我们对它们的理解。这项研究还将揭示复分析和理论物理之间的联系。该项目与多重分形分析密切相关,多重分形分析是一个介于数学和物理之间的交叉学科。它强调复分析,概率论和统计物理之间的相互作用。所有这些领域都可以从这个项目中受益。例如,一些结果将提供对统计物理学中几个重要模型的更深入理解。此外,这一领域的某些成果与工程有着直接的联系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dmitry Beliaev其他文献
Smooth Gaussian fields and percolation
平滑高斯场和渗透
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:1.6
- 作者:
Dmitry Beliaev - 通讯作者:
Dmitry Beliaev
Real zero polynomials and Pólya-Schur type theorems
- DOI:
10.1007/bf02789041 - 发表时间:
2004-12-01 - 期刊:
- 影响因子:0.900
- 作者:
Alexandru Aleman;Dmitry Beliaev;Haakan Hedenmalm - 通讯作者:
Haakan Hedenmalm
How Nanoscale Protein Interactions Determine the Mesoscale Dynamic Organisation of Membrane Proteins
- DOI:
10.1016/j.bpj.2018.11.1984 - 发表时间:
2019-02-15 - 期刊:
- 影响因子:
- 作者:
Anna L. Duncan;Maximilian A.R. Bandurka;Matthieu G. Chavent;Patrice Rassam;Wanling Song;Oliver Birkholz;Jean Helie;Tyler Reddy;Dmitry Beliaev;Ben Hambly;Jacob Piehler;Colin Kleanthous;Mark S.P. Sansom - 通讯作者:
Mark S.P. Sansom
Dmitry Beliaev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
REU Site: Fractals and Stochastics at UConn
REU 网站:康涅狄格大学的分形和随机指标
- 批准号:
2349433 - 财政年份:2024
- 资助金额:
$ 12.66万 - 项目类别:
Standard Grant
Conference: Analysis on fractals and networks with applications, at Luminy
会议:分形和网络分析及其应用,在 Luminy 举行
- 批准号:
2334026 - 财政年份:2024
- 资助金额:
$ 12.66万 - 项目类别:
Standard Grant
CAREER: Heat Semigroups and Strichartz Estimates on Fractals
职业:分形上的热半群和 Strichartz 估计
- 批准号:
2140664 - 财政年份:2022
- 资助金额:
$ 12.66万 - 项目类别:
Continuing Grant
Analysis, geometry and their interplays on fractals and stochastic processes on them
分形及其随机过程的分析、几何及其相互作用
- 批准号:
22H01128 - 财政年份:2022
- 资助金额:
$ 12.66万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: The Geometry of Fractals Meets Fourier Analysis
职业:分形几何与傅立叶分析的结合
- 批准号:
2142221 - 财政年份:2022
- 资助金额:
$ 12.66万 - 项目类别:
Continuing Grant
Computational Modelling of Leidenfrost Fractals
莱顿弗罗斯特分形的计算模型
- 批准号:
2419855 - 财政年份:2020
- 资助金额:
$ 12.66万 - 项目类别:
Studentship
Electronic Fractals in Strongly Correlated Quantum Materials
强相关量子材料中的电子分形
- 批准号:
2006192 - 财政年份:2020
- 资助金额:
$ 12.66万 - 项目类别:
Continuing Grant
Cornell 7th Conference on Analysis, Probability, and Mathematical Physics on Fractals
康奈尔大学第七届分形分析、概率和数学物理会议
- 批准号:
2000148 - 财政年份:2020
- 资助金额:
$ 12.66万 - 项目类别:
Standard Grant
CBMS Conference: Gaussian Random Fields, Fractals, Stochastic Partial Differential Equations, and Extremes
CBMS 会议:高斯随机场、分形、随机偏微分方程和极值
- 批准号:
1933330 - 财政年份:2019
- 资助金额:
$ 12.66万 - 项目类别:
Standard Grant