Higher rational connectedness and applications

更高的理性连接和应用

基本信息

  • 批准号:
    0758521
  • 负责人:
  • 金额:
    $ 9.79万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-08-01 至 2011-07-31
  • 项目状态:
    已结题

项目摘要

Rational simple connectedness is an algebraic notion which is to simple connectedness as rational connectedness is to path connectedness.Just as a topological fibration over a 2-dimensional base with simply connected fiber admits a continuous section, also an algebraic fibration over a surface with rationally simply connected general fiber admits a rational section (under suitable additional hypotheses). This project investigates the theory beyond this result, just as topological obstruction theory is the theory beyond the quoted topological result. The first goal is to determine how the obstruction to "weak approximation"(approximation of power series solutions by polynomial solutions) decomposes into a local obstruction and a global obstruction. The second goal is to investigate the obstruction theory where it is not yet known by determining precisely which algebraic fibrations over a surface of a specified, simple type admit a rational section.Systems of polynomial equations are ubiquitous in mathematics, science and engineering. In studying the collection of all solutions in complex numbers, i.e., the variety, associated to such a system, there is one special phenomenon: the system is "rationally connected" if for every pair of solutions, there is a polynomial map taking values in the variety and whose values interpolate between the given pair of solutions. This special property is often satisfied in practice. Surprisingly, a system of polynomial equations depending algebraically on 1 extra parameter (often thought of as time) always has a family of solutions varying as a polynomial of the parameter so long as the system for a fixed general choice of the parameter is rationally connected. There is now an analogous theorem for a 2-parameter system, but with very strong constraints on the system. The goal of the project is to weaken the constraint condition, and thus make the advance more widely applicable, by using notions analogous to those in topology, i.e., "rubber-sheet geometry".
有理单连通性是一个代数概念,它对简单连通性的作用就像有理连通性对路径连通性的作用一样,就像具有单连通纤维的二维基上的拓扑纤维允许连续截面一样,具有有理单连通普通纤维的曲面上的代数纤维也允许有理截面(在适当的附加假设下)。本课题对这一结果之外的理论进行了研究,就像拓扑阻塞理论是引用的拓扑结果之外的理论一样。第一个目标是确定对“弱逼近”(用多项式解逼近幂级数解)的障碍如何分解为局部障碍和整体障碍。第二个目标是研究阻塞理论,在这个理论中,通过精确地确定指定的简单类型的曲面上的哪些代数纤维允许有理截面,来研究该理论。多项式方程组在数学、科学和工程中普遍存在。在研究与这样一个系统相关的复数中的所有解的集合,即簇,有一个特殊的现象:如果对于每一对解,存在一个取值于簇中的值的多项式映射,并且其值在给定的解对之间内插,则系统是“有理连通的”。这一特殊性质往往在实践中得到满足。令人惊讶的是,代数上依赖于一个额外参数(通常被认为是时间)的多项式方程系统总是有一族解作为参数的多项式变化,只要系统对于固定的一般参数选择是有理连接的。现在有一个关于两参数系统的类似定理,但对系统有非常强的约束。该项目的目标是通过使用与拓扑学中的概念类似的概念,即“橡胶片几何”,来削弱约束条件,从而使推进更广泛地适用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jason Starr其他文献

On the asymptotic enumerativity property for Fano manifolds
关于 Fano 流形的渐近枚举性
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Roya Beheshti;Brian Lehmann;Carl Lian;Eric Riedl;Jason Starr;Sho Tanimoto
  • 通讯作者:
    Sho Tanimoto
Mo1162 GUIDELINE COMPLIANCE AND OUTCOMES OF GENETIC TESTING IN PANCREATIC CANCER PATIENTS
  • DOI:
    10.1016/s0016-5085(23)02804-4
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Derk C. Klatte;Heather Hardway;Jason Starr;Douglas L. Riegert-Johnson;Kristin Clift;Thomas Potjer;Jeanin E. Van Hooft;Monique Van Leerdam;Richard J. Presutti;Michael B. Wallace;Yan Bi
  • 通讯作者:
    Yan Bi
Agent-Based Simulation of Social Determinants of Health for Equitable COVID-19 Intervention
基于主体的健康社会决定因素模拟,以实现公平的 COVID-19 干预
Every rationally connected variety over the function field of a curve has a rational point
曲线函数域上的每个有理连通簇都有一个有理点
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. J. D. Jong;Jason Starr
  • 通讯作者:
    Jason Starr
Agent-Based Simulation for Localized COVID-19 Intervention Decision
基于代理的本地化 COVID-19 干预决策模拟

Jason Starr的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jason Starr', 18)}}的其他基金

Collaborative Research: AGNES, Algebraic Geometry NorthEastern Series
合作研究:AGNES、代数几何东北系列
  • 批准号:
    1937757
  • 财政年份:
    2019
  • 资助金额:
    $ 9.79万
  • 项目类别:
    Standard Grant
Arithmetic of Rationally Simply Connected Varieties
有理单连通簇的算术
  • 批准号:
    1405709
  • 财政年份:
    2014
  • 资助金额:
    $ 9.79万
  • 项目类别:
    Standard Grant
Collaborative Research: AGNES: Algebraic Geometry NorthEastern Series, April 25-27, 2014
合作研究:AGNES:代数几何东北系列,2014 年 4 月 25-27 日
  • 批准号:
    1360586
  • 财政年份:
    2014
  • 资助金额:
    $ 9.79万
  • 项目类别:
    Standard Grant
Integral Points, Rational Curves and Entire Curves on Projective Varieties
射影簇上的积分点、有理曲线和整曲线
  • 批准号:
    1308737
  • 财政年份:
    2013
  • 资助金额:
    $ 9.79万
  • 项目类别:
    Standard Grant
Collaborative Research: AGNES. Algebraic Geometry NorthEastern Series
合作研究:AGNES。
  • 批准号:
    1066154
  • 财政年份:
    2011
  • 资助金额:
    $ 9.79万
  • 项目类别:
    Standard Grant
CAREER: Higher rational connectedness, higher Fano manifolds, and applications
职业:更高的理性连通性、更高的 Fano 流形和应用
  • 批准号:
    0846972
  • 财政年份:
    2009
  • 资助金额:
    $ 9.79万
  • 项目类别:
    Continuing Grant
Collaborative Research: FRG: Geometry of moduli spaces of rational curves with applications to Diophantine problems over function fields
合作研究:FRG:有理曲线模空间的几何及其在函数域上丢番图问题的应用
  • 批准号:
    0734178
  • 财政年份:
    2006
  • 资助金额:
    $ 9.79万
  • 项目类别:
    Standard Grant
Collaborative Research: FRG: Geometry of moduli spaces of rational curves with applications to Diophantine problems over function fields
合作研究:FRG:有理曲线模空间的几何及其在函数域上丢番图问题的应用
  • 批准号:
    0553921
  • 财政年份:
    2006
  • 资助金额:
    $ 9.79万
  • 项目类别:
    Standard Grant

相似国自然基金

基于Rational Krylov法和小波域稀疏约束的时间域海洋电磁三维正反演研究
  • 批准号:
    41804098
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于Rational-Tensor(RTCam)摄像机模型的序列图像间几何框架研究
  • 批准号:
    61072105
  • 批准年份:
    2010
  • 资助金额:
    29.0 万元
  • 项目类别:
    面上项目

相似海外基金

Advances in rational operations in free analysis
自由分析中理性运算的进展
  • 批准号:
    2348720
  • 财政年份:
    2024
  • 资助金额:
    $ 9.79万
  • 项目类别:
    Standard Grant
CAREER: Rational Design of Dual-Functional Photocatalysts for Synthetic Reactions: Controlling Photosensitization and Reaction with a Single Nanocrystal
职业:用于合成反应的双功能光催化剂的合理设计:用单个纳米晶体控制光敏化和反应
  • 批准号:
    2339866
  • 财政年份:
    2024
  • 资助金额:
    $ 9.79万
  • 项目类别:
    Continuing Grant
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 9.79万
  • 项目类别:
    Fellowship
Designing Rational Combinations to Improve CAR T Cell Therapy for Prostate Cancer
设计合理的组合以改善前列腺癌的 CAR T 细胞疗法
  • 批准号:
    10752046
  • 财政年份:
    2024
  • 资助金额:
    $ 9.79万
  • 项目类别:
Computability and the absolute Galois group of the rational numbers
可计算性和有理数的绝对伽罗瓦群
  • 批准号:
    2348891
  • 财政年份:
    2024
  • 资助金额:
    $ 9.79万
  • 项目类别:
    Continuing Grant
Rational GAGA and Applications to Field Invariants
Rational GAGA 及其在场不变量中的应用
  • 批准号:
    2402367
  • 财政年份:
    2024
  • 资助金额:
    $ 9.79万
  • 项目类别:
    Continuing Grant
REVOLUPHON - Rational Evolutionary Phonology
REVOLUPHON - 理性进化音韵学
  • 批准号:
    EP/Y02429X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 9.79万
  • 项目类别:
    Research Grant
CAREER: The Rational Programmer, An Investigative Method for Programming Language Pragmatics
职业:理性程序员,编程语言语用学的一种研究方法
  • 批准号:
    2237984
  • 财政年份:
    2023
  • 资助金额:
    $ 9.79万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Rational design of redox-responsive materials for critical element separations
合作研究:DMREF:用于关键元素分离的氧化还原响应材料的合理设计
  • 批准号:
    2323989
  • 财政年份:
    2023
  • 资助金额:
    $ 9.79万
  • 项目类别:
    Standard Grant
Collaborative Research: Ideas Lab: Rational Design of Noncoding RNA for Epigenetic Signal Amplification
合作研究:创意实验室:用于表观遗传信号放大的非编码 RNA 的合理设计
  • 批准号:
    2243665
  • 财政年份:
    2023
  • 资助金额:
    $ 9.79万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了