Integral Points, Rational Curves and Entire Curves on Projective Varieties

射影簇上的积分点、有理曲线和整曲线

基本信息

  • 批准号:
    1308737
  • 负责人:
  • 金额:
    $ 3.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-05-01 至 2014-04-30
  • 项目状态:
    已结题

项目摘要

The month-long conference, "Rational Points, Rational Curves, and Entire Holomorphic Curves on Varieties", June 3-28, 2013, will be held at the Centre de Recherches Mathematiques in Montreal, Quebec, Canada. The URL for the conference website is as follows.http://www.crm.umontreal.ca/2013/Integral13/index_e.phpThe proposed activity is a summer school of 2-3 weeks comprised of a dozen mini-courses, followed by a week-long international workshop. There have been recent advances in seemingly separate fields: classification of complex projective varieties, existence and properties of solutions of Diophantine equations, and analytic behavior of entire curves in projective varieties. The moment is ripe for a summer school and workshop bringing together experts to synthesize these results, and train junior mathematicians in the new techniques. With the groundwork laid, we will emphasize open problems that seem amenable to solution: the holomorphic Lang conjecture about entire curves in general type varieties, potential density of rational points and rational curves on Calabi-Yau varieties, and the Grothendieck-Katz conjecture on algebraic solutions of differential equations.Systems of polynomial equations arise in all areas of mathematics, as well as areas of science and engineering as disparate as genomics and robot design. The oldest, and still most important, problem in this area is that of finding solutions to polynomial systems, particularly solutions that are fractions of whole numbers. Although surprising, this problem is closely connected to the related problem of interpolating any two given solutions by a system of solutions that are the outputs of a fraction of polynomials, or, more generally, an entire analytic function (the functions most amenable to study via "power series expansion"). There have been recent breakthroughs on both of these problems separately, as well as the interaction between them. This conference will feature training courses for young mathematicians, discussions with experts, and a public outreach lecture, as well as a planned volume to disseminate this work to an even broader audience.
为期一个月的会议,“有理点、有理曲线和全纯曲线上的变种”,将于2013年6月3日至28日在加拿大魁北克省蒙特利尔的数学研究中心举行。会议网站的网址如下:http://www.crm.umontreal.ca/2013/Integral13/index_e.phpThe提议的活动是为期2-3周的暑期学校,包括12个迷你课程,随后是为期一周的国际研讨会。最近在一些看似独立的领域取得了进展:复射影变的分类,丢芬图方程解的存在性和性质,以及整个曲线在射影变中的解析行为。举办暑期学校和研讨会的时机已经成熟,汇集了专家来综合这些结果,并在新技术方面培训初级数学家。在奠定基础的基础上,我们将着重讨论一些似乎可以解决的开放问题:关于一般型变整体曲线的全纯Lang猜想,关于Calabi-Yau变有理点和有理曲线的势密度,以及关于微分方程代数解的Grothendieck-Katz猜想。多项式方程系统出现在数学的所有领域,以及科学和工程领域,如基因组学和机器人设计。这个领域最古老,也是最重要的问题是多项式系统的解,特别是整数的分数解。虽然令人惊讶,但这个问题与一个相关问题密切相关,即通过多项式的一个分数的输出的解系统插入任意两个给定的解,或者更一般地说,插入整个解析函数(最适合通过“幂级数展开”研究的函数)。最近,这两个问题分别以及它们之间的相互作用都取得了突破。本次会议将为年轻数学家提供培训课程,与专家进行讨论,并举办一次公开宣传讲座,同时还计划出版一本书,向更广泛的受众传播这项工作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jason Starr其他文献

On the asymptotic enumerativity property for Fano manifolds
关于 Fano 流形的渐近枚举性
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Roya Beheshti;Brian Lehmann;Carl Lian;Eric Riedl;Jason Starr;Sho Tanimoto
  • 通讯作者:
    Sho Tanimoto
Mo1162 GUIDELINE COMPLIANCE AND OUTCOMES OF GENETIC TESTING IN PANCREATIC CANCER PATIENTS
  • DOI:
    10.1016/s0016-5085(23)02804-4
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Derk C. Klatte;Heather Hardway;Jason Starr;Douglas L. Riegert-Johnson;Kristin Clift;Thomas Potjer;Jeanin E. Van Hooft;Monique Van Leerdam;Richard J. Presutti;Michael B. Wallace;Yan Bi
  • 通讯作者:
    Yan Bi
Agent-Based Simulation of Social Determinants of Health for Equitable COVID-19 Intervention
基于主体的健康社会决定因素模拟,以实现公平的 COVID-19 干预
Every rationally connected variety over the function field of a curve has a rational point
曲线函数域上的每个有理连通簇都有一个有理点
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. J. D. Jong;Jason Starr
  • 通讯作者:
    Jason Starr
Agent-Based Simulation for Localized COVID-19 Intervention Decision
基于代理的本地化 COVID-19 干预决策模拟

Jason Starr的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jason Starr', 18)}}的其他基金

Collaborative Research: AGNES, Algebraic Geometry NorthEastern Series
合作研究:AGNES、代数几何东北系列
  • 批准号:
    1937757
  • 财政年份:
    2019
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
Arithmetic of Rationally Simply Connected Varieties
有理单连通簇的算术
  • 批准号:
    1405709
  • 财政年份:
    2014
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
Collaborative Research: AGNES: Algebraic Geometry NorthEastern Series, April 25-27, 2014
合作研究:AGNES:代数几何东北系列,2014 年 4 月 25-27 日
  • 批准号:
    1360586
  • 财政年份:
    2014
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
Collaborative Research: AGNES. Algebraic Geometry NorthEastern Series
合作研究:AGNES。
  • 批准号:
    1066154
  • 财政年份:
    2011
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
CAREER: Higher rational connectedness, higher Fano manifolds, and applications
职业:更高的理性连通性、更高的 Fano 流形和应用
  • 批准号:
    0846972
  • 财政年份:
    2009
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Continuing Grant
Higher rational connectedness and applications
更高的理性连接和应用
  • 批准号:
    0758521
  • 财政年份:
    2008
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
Collaborative Research: FRG: Geometry of moduli spaces of rational curves with applications to Diophantine problems over function fields
合作研究:FRG:有理曲线模空间的几何及其在函数域上丢番图问题的应用
  • 批准号:
    0734178
  • 财政年份:
    2006
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
Collaborative Research: FRG: Geometry of moduli spaces of rational curves with applications to Diophantine problems over function fields
合作研究:FRG:有理曲线模空间的几何及其在函数域上丢番图问题的应用
  • 批准号:
    0553921
  • 财政年份:
    2006
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant

相似国自然基金

光子人工微结构中Exceptional Points附近的模式耦合及相关新特性研究
  • 批准号:
    11674247
  • 批准年份:
    2016
  • 资助金额:
    70.0 万元
  • 项目类别:
    面上项目

相似海外基金

Diversified study on Manin's conjecture for rational points/rational curves/motives
马宁有理点/有理曲线/动机猜想的多元化研究
  • 批准号:
    23H01067
  • 财政年份:
    2023
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Rational points on modular curves, and the geometry of arithmetic statistics
模曲线上的有理点和算术统计的几何
  • 批准号:
    2302356
  • 财政年份:
    2023
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Continuing Grant
Rational points on varieties
品种理性点
  • 批准号:
    2889566
  • 财政年份:
    2023
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Studentship
Methods for arithmetic distance, distribution and complexity of rational points
有理点算术距离、分布和复杂度的计算方法
  • 批准号:
    RGPIN-2021-03821
  • 财政年份:
    2022
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Rational Points on Varieties
品种的理性点
  • 批准号:
    2751922
  • 财政年份:
    2022
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Studentship
Integral points on stacks, hyperplane sections over finite fields, and vectors forming rational angles
堆栈上的积分点、有限域上的超平面截面以及形成有理角的向量
  • 批准号:
    2101040
  • 财政年份:
    2021
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Continuing Grant
Rationality, Rationality Index, and Rational Points
理性、理性指数和理性点
  • 批准号:
    2101434
  • 财政年份:
    2021
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Continuing Grant
Rational points on algebraic varieties
代数簇的有理点
  • 批准号:
    RGPIN-2017-03970
  • 财政年份:
    2021
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Methods for arithmetic distance, distribution and complexity of rational points
有理点算术距离、分布和复杂度的计算方法
  • 批准号:
    DGECR-2021-00218
  • 财政年份:
    2021
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Launch Supplement
Methods for arithmetic distance, distribution and complexity of rational points
有理点算术距离、分布和复杂度的计算方法
  • 批准号:
    RGPIN-2021-03821
  • 财政年份:
    2021
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了