CAREER: Higher rational connectedness, higher Fano manifolds, and applications
职业:更高的理性连通性、更高的 Fano 流形和应用
基本信息
- 批准号:0846972
- 负责人:
- 金额:$ 42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-06-01 至 2015-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Rational connectedness, rational simple connectedness, etc., are algebro-geometric analogues of path connectedness, simple connectedness, etc. Just as higher connectedness and higher homotopy groups play an important role in topological obstruction theory, so the algebro-geometric analogues should play an important role in algebro-geometric obstruction theory. In particular, new ideas coming from A1-homotopy theory should resolve the weak approximation problem of Hassett and Tschinkel. There are 3 objectives of the research component. One objective is to develop an algebro-geometric theory of higher rational connectedness analogous to the theory of topological obstruction theory, and with applications to existence of rational sections ofalgebraic fibrations. A second objective is the classification of higher Fano manifolds, the study of their connection to higher rational connectedness, and the study of their complex differential geometry. The final objective is to study the parameter spaces for rational curves on Fano manifolds which do not satisfy the higher Fano conditions. This is relevant to the open problem of proving existence of non-unirational Fano manifolds.Quite frequently in science and engineering one wants to solve a system of polynomial equations in some set of variables, and depending on some set of parameters. An optimal case is when there is a solution to the system of equations whose coordinates are themselves polynomials (or more often fractions of polynomials) in the parameters. There are some sufficient conditions for this optimal solution which involve the geometry of the solution set for a general choice of the parameters. The goal is to sharpen these results to give conditions which are both sufficient and necessary, i.e., to develop a theory of "obstructions" to the existence of rational solutions.The educational component of the proposal has 3 parts: a program aimed at training high school math teachers from the MA program directed by the PI so that they may establish and run math clubs and math circles in their schools, a seminar/summer workshop in mathematical exposition for graduate students and recent postdocs, and a northeastern regional algebraic geometry seminar fostering interactions between graduate students in different cities across the northeastern United States.
理性连通性,理性简单连通性,等等,是路连通性、单连通性等的代数几何类比。正如高连通性和高同伦群在拓扑阻塞理论中起着重要作用一样,代数几何类比在代数几何阻塞理论中也应该起着重要作用。 特别是,来自A1-同伦理论的新思想应该解决Hassett和Tschinkel的弱近似问题。研究部分有三个目标。一个目标是发展一个代数几何理论的更高的合理的连通性类似的理论的拓扑阻塞理论,并与应用程序的存在合理的部分ofalgebraic纤维化。第二个目标是分类较高的法诺流形,研究他们的连接,以更高的理性连通性,并研究其复杂的微分几何。最终目的是研究Fano流形上不满足高阶Fano条件的有理曲线的参数空间。这与证明非单有理Fano流形的存在性的公开问题有关。在科学和工程中,人们经常希望解决某组变量的多项式方程组,并取决于某组参数。 一个最佳的情况是当存在一个方程组的解时,该方程组的坐标本身是参数中的多项式(或更常见的是多项式的分数)。 有一些充分条件,这个最佳解决方案,其中涉及几何的解决方案集的一般选择的参数。 我们的目标是锐化这些结果,以给出既充分又必要的条件,即,发展一种“障碍”理论,以存在合理的解决办法。建议的教育部分有三个部分:一个旨在培训由PI指导的MA课程的高中数学教师的计划,以便他们可以在学校建立和运行数学俱乐部和数学圈,为研究生和最近的博士后举办数学博览会的研讨会/夏季讲习班,以及东北地区代数几何研讨会,促进美国东北部不同城市研究生之间的互动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason Starr其他文献
On the asymptotic enumerativity property for Fano manifolds
关于 Fano 流形的渐近枚举性
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Roya Beheshti;Brian Lehmann;Carl Lian;Eric Riedl;Jason Starr;Sho Tanimoto - 通讯作者:
Sho Tanimoto
Mo1162 GUIDELINE COMPLIANCE AND OUTCOMES OF GENETIC TESTING IN PANCREATIC CANCER PATIENTS
- DOI:
10.1016/s0016-5085(23)02804-4 - 发表时间:
2023-05-01 - 期刊:
- 影响因子:
- 作者:
Derk C. Klatte;Heather Hardway;Jason Starr;Douglas L. Riegert-Johnson;Kristin Clift;Thomas Potjer;Jeanin E. Van Hooft;Monique Van Leerdam;Richard J. Presutti;Michael B. Wallace;Yan Bi - 通讯作者:
Yan Bi
Agent-Based Simulation of Social Determinants of Health for Equitable COVID-19 Intervention
基于主体的健康社会决定因素模拟,以实现公平的 COVID-19 干预
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Jason Starr;Morgan P. Kain - 通讯作者:
Morgan P. Kain
Every rationally connected variety over the function field of a curve has a rational point
曲线函数域上的每个有理连通簇都有一个有理点
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
A. J. D. Jong;Jason Starr - 通讯作者:
Jason Starr
Agent-Based Simulation for Localized COVID-19 Intervention Decision
基于代理的本地化 COVID-19 干预决策模拟
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Jason Starr;Morgan P. Kain - 通讯作者:
Morgan P. Kain
Jason Starr的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason Starr', 18)}}的其他基金
Collaborative Research: AGNES, Algebraic Geometry NorthEastern Series
合作研究:AGNES、代数几何东北系列
- 批准号:
1937757 - 财政年份:2019
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Arithmetic of Rationally Simply Connected Varieties
有理单连通簇的算术
- 批准号:
1405709 - 财政年份:2014
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Collaborative Research: AGNES: Algebraic Geometry NorthEastern Series, April 25-27, 2014
合作研究:AGNES:代数几何东北系列,2014 年 4 月 25-27 日
- 批准号:
1360586 - 财政年份:2014
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Integral Points, Rational Curves and Entire Curves on Projective Varieties
射影簇上的积分点、有理曲线和整曲线
- 批准号:
1308737 - 财政年份:2013
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Collaborative Research: AGNES. Algebraic Geometry NorthEastern Series
合作研究:AGNES。
- 批准号:
1066154 - 财政年份:2011
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Higher rational connectedness and applications
更高的理性连接和应用
- 批准号:
0758521 - 财政年份:2008
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Collaborative Research: FRG: Geometry of moduli spaces of rational curves with applications to Diophantine problems over function fields
合作研究:FRG:有理曲线模空间的几何及其在函数域上丢番图问题的应用
- 批准号:
0734178 - 财政年份:2006
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Collaborative Research: FRG: Geometry of moduli spaces of rational curves with applications to Diophantine problems over function fields
合作研究:FRG:有理曲线模空间的几何及其在函数域上丢番图问题的应用
- 批准号:
0553921 - 财政年份:2006
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
相似国自然基金
Higher Teichmüller理论中若干控制型问题的研究
- 批准号:
- 批准年份:2020
- 资助金额:52 万元
- 项目类别:面上项目
高桡度(Higher-Twist)算符和量子色动力学因子化
- 批准号:
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:面上项目
相似海外基金
Investigating the Role of International Higher Education in Japan-UK Relations: An Analysis of the RENKEI University Network Partnership
调查国际高等教育在日英关系中的作用:仁庆大学网络伙伴关系分析
- 批准号:
24K16704 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
De Montfort University Higher Education Corporation and FABRIC Charitable Incorporated Organisation KTP 23_24 R1
德蒙福特大学高等教育公司和 FABRIC 慈善法人组织 KTP 23_24 R1
- 批准号:
10071520 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Knowledge Transfer Partnership
Investigating the Outcome of EMI Programs in Higher Education Context: Cases from Japan and Mongolia
调查高等教育背景下 EMI 项目的成果:日本和蒙古的案例
- 批准号:
24K16709 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Congestion control in complex networks with higher-order interactions
具有高阶交互的复杂网络中的拥塞控制
- 批准号:
DP240100963 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Discovery Projects
University of Portsmouth Higher Education Corporation and Entec International Limited KTP 23_24 R1
朴茨茅斯大学高等教育公司和 Entec International Limited KTP 23_24 R1
- 批准号:
10070881 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Knowledge Transfer Partnership
CC* Regional Networking: Connecting Colorado's Western Slope Small Institutions of Higher Education to the Front Range GigaPoP Regional R&E Infrastructure
CC* 区域网络:将科罗拉多州西坡小型高等教育机构与前沿 GigaPoP 区域 R 连接起来
- 批准号:
2346635 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Higher Representation Theory and Subfactors
更高表示理论和子因素
- 批准号:
2400089 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Conference: Moving to higher rank: from hyperbolic to Anosov
会议:迈向更高级别:从双曲线到阿诺索夫
- 批准号:
2350423 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
CC* Planning: Leading Advanced University Computing for Higher Education (LAUNCH) MSU
CC* 规划:领先的高等教育先进大学计算 (LAUNCH) MSU
- 批准号:
2346088 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
TransformUs Higher Ed: Developing confident, 'classroom-ready' graduates
TransformUs 高等教育:培养自信、“为课堂做好准备”的毕业生
- 批准号:
DE240100452 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Discovery Early Career Researcher Award














{{item.name}}会员




