Arithmetic of Rationally Simply Connected Varieties

有理单连通簇的算术

基本信息

  • 批准号:
    1405709
  • 负责人:
  • 金额:
    $ 16.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-15 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

Polynomial equations are ubiquitous in science and engineering. Particularly important are the kinds of polynomial equations that arise in fields like cryptography and computer science, where the inputs and the outputs of the polynomials are fractions or their near-cousins (elements in a "global field"). For these equations, it is important not only to know that there are solutions in fractions, but also to know that there are many solutions, and that we can find such solutions efficiently in a finite amount of runtime (i.e., there are efficient bounds on the size of the numerators and denominators of some fraction solution). Investigating these questions is a major goal of algebraic geometry. Remarkably, ideas from geometry, particularly ideas suggested by physics, give a proof of existence of integral solutions for many special polynomial equations over global function fields. The main goal of this project is to exploit this advance and prove the veracity of certain conjectured bounds on rational solutions of these special polynomial equations ("rationally simply connected" systems of equations) over global function fields, thus giving an efficient algorithm for finding rational solutions. In addition, there are several educational and training goals: improving the writing of math students through weekly meetings, helping with a summer math camp for high school students, and holding twice-annual one-day training workshops for math students coinciding with one an important weekend workshop series in algebraic geometry. Technically, the main objective is to study the Batyrev-Manin conjecture on asymptotics of rational points of bounded height over global function fields for the special class of "rationally simply connected" varieties: a class that includes, for instance, the projective homogeneous varieties so ubiquitous in representation theory. Recent work relates rational points over global function fields to geometric properties of moduli spaces of rational curves on lifts of the varieties over the complex numbers. By exploiting this, there is hope to give efficient height bounds on rational points implied by the Batyrev-Manin Conjecture, and hopefully to settle the conjecture in important special cases. Secondary goals are to understand the Picard groups of these moduli spaces (roughly, the different possible "height functions"), and to extend the amazingly successful story of Neron models to a more general class of varieties than Abelian varieties. Broader impacts include continuing and extending a mathematical writing and professional development seminar begun by the PI, to continue the partial support of the PI for the Mathematics Summer Camp at Stony Brook University, and to institute a new series of one-day training workshops for graduate students timed to coincide with the AGNES series of twice-annual weekend workshops in algebraic geometry.
多项式方程在科学和工程中无处不在。特别重要的是在密码学和计算机科学等领域出现的多项式方程,其中多项式的输入和输出是分数或它们的近亲(“全局域”中的元素)。对于这些方程,重要的是不仅要知道分数有解,而且要知道有很多解,并且我们可以在有限的运行时间内有效地找到这样的解(即,某些分数解的分子和分母的大小有有效的界限)。研究这些问题是代数几何的一个主要目标。值得注意的是,几何学的思想,特别是物理学提出的思想,证明了全局函数场上许多特殊多项式方程的积分解的存在性。本课题的主要目标是利用这一进展,证明这些特殊多项式方程(“理性单连通”方程组)在全局函数域上有理解的某些猜想界的准确性,从而给出一个寻找有理解的有效算法。此外,还有几个教育和培训目标:通过每周的会议提高数学学生的写作水平,帮助高中生举办夏季数学夏令营,以及每年两次为数学学生举办为期一天的培训研讨会,同时举办一个重要的代数几何周末研讨会系列。从技术上讲,主要目的是研究“理性单连通”变种的特殊类关于整体函数域上有界高度有理点渐近性的Batyrev-Manin猜想:例如,这类变种包括在表示理论中普遍存在的射影齐次变种。最近的研究将整体函数域上的有理点与复数上的变项上的有理曲线的模空间的几何性质联系起来。利用这一点,有希望给出Batyrev-Manin猜想所蕴涵的有理点的有效高度界,并有希望解决Batyrev-Manin猜想中一些重要的特殊情况。次要目标是理解这些模空间的皮卡德群(粗略地说,不同可能的“高度函数”),并将Neron模型的惊人成功故事扩展到比阿贝尔变体更一般的变体类。更广泛的影响包括继续和扩展PI开始的数学写作和专业发展研讨会,继续PI对石溪大学数学夏令营的部分支持,以及为研究生设立一系列新的为期一天的培训讲习班,与AGNES系列每年两次的代数几何周末讲习班相一致。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jason Starr其他文献

On the asymptotic enumerativity property for Fano manifolds
关于 Fano 流形的渐近枚举性
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Roya Beheshti;Brian Lehmann;Carl Lian;Eric Riedl;Jason Starr;Sho Tanimoto
  • 通讯作者:
    Sho Tanimoto
Mo1162 GUIDELINE COMPLIANCE AND OUTCOMES OF GENETIC TESTING IN PANCREATIC CANCER PATIENTS
  • DOI:
    10.1016/s0016-5085(23)02804-4
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Derk C. Klatte;Heather Hardway;Jason Starr;Douglas L. Riegert-Johnson;Kristin Clift;Thomas Potjer;Jeanin E. Van Hooft;Monique Van Leerdam;Richard J. Presutti;Michael B. Wallace;Yan Bi
  • 通讯作者:
    Yan Bi
Agent-Based Simulation of Social Determinants of Health for Equitable COVID-19 Intervention
基于主体的健康社会决定因素模拟,以实现公平的 COVID-19 干预
Every rationally connected variety over the function field of a curve has a rational point
曲线函数域上的每个有理连通簇都有一个有理点
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. J. D. Jong;Jason Starr
  • 通讯作者:
    Jason Starr
Agent-Based Simulation for Localized COVID-19 Intervention Decision
基于代理的本地化 COVID-19 干预决策模拟

Jason Starr的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jason Starr', 18)}}的其他基金

Collaborative Research: AGNES, Algebraic Geometry NorthEastern Series
合作研究:AGNES、代数几何东北系列
  • 批准号:
    1937757
  • 财政年份:
    2019
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Standard Grant
Collaborative Research: AGNES: Algebraic Geometry NorthEastern Series, April 25-27, 2014
合作研究:AGNES:代数几何东北系列,2014 年 4 月 25-27 日
  • 批准号:
    1360586
  • 财政年份:
    2014
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Standard Grant
Integral Points, Rational Curves and Entire Curves on Projective Varieties
射影簇上的积分点、有理曲线和整曲线
  • 批准号:
    1308737
  • 财政年份:
    2013
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Standard Grant
Collaborative Research: AGNES. Algebraic Geometry NorthEastern Series
合作研究:AGNES。
  • 批准号:
    1066154
  • 财政年份:
    2011
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Standard Grant
CAREER: Higher rational connectedness, higher Fano manifolds, and applications
职业:更高的理性连通性、更高的 Fano 流形和应用
  • 批准号:
    0846972
  • 财政年份:
    2009
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Continuing Grant
Higher rational connectedness and applications
更高的理性连接和应用
  • 批准号:
    0758521
  • 财政年份:
    2008
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Standard Grant
Collaborative Research: FRG: Geometry of moduli spaces of rational curves with applications to Diophantine problems over function fields
合作研究:FRG:有理曲线模空间的几何及其在函数域上丢番图问题的应用
  • 批准号:
    0734178
  • 财政年份:
    2006
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Standard Grant
Collaborative Research: FRG: Geometry of moduli spaces of rational curves with applications to Diophantine problems over function fields
合作研究:FRG:有理曲线模空间的几何及其在函数域上丢番图问题的应用
  • 批准号:
    0553921
  • 财政年份:
    2006
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Molecular imprinting strategy to rationally design porous solid acid catalysts for C-C coupling chemistries
职业:分子印迹策略合理设计用于 C-C 偶联化学的多孔固体酸催化剂
  • 批准号:
    2340993
  • 财政年份:
    2024
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Continuing Grant
Design and development of new Lipid Nano Particle delivery systems for new RNA-based c therapeutics: A rationally designed chemistry and microfluidics
设计和开发新型脂质纳米粒子递送系统,用于新型基于 RNA 的 c 疗法:合理设计的化学和微流体
  • 批准号:
    2889386
  • 财政年份:
    2023
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Studentship
Rationally designed ribozymes switched-on by nucleotide repeat extensions as potential tools of genetic therapy for repeat expansion disorders.
合理设计的核酶通过核苷酸重复延伸开启,作为重复扩张疾病基因治疗的潜在工具。
  • 批准号:
    479481
  • 财政年份:
    2023
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Operating Grants
Rationally Designed, Target-specific Imaging Probes for Nephro-urology Diagnoses
用于肾泌尿科诊断的合理设计、针对特定目标的成像探头
  • 批准号:
    10659440
  • 财政年份:
    2023
  • 资助金额:
    $ 16.8万
  • 项目类别:
Quantifying the Effects of Disorder and Lateral Interactions on Chemically Modified Carbon Electrodes: Molecular Insights to Rationally Design Electrochemical Performance
量化无序和横向相互作用对化学修饰碳电极的影响:合理设计电化学性能的分子洞察
  • 批准号:
    2305065
  • 财政年份:
    2023
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Standard Grant
Rationally guided discovery platform for monoclonal antibodies against carbohydrate antigens using virus-like particle conjugate immunization and high throughput selection
使用病毒样颗粒缀合物免疫和高通量选择的合理引导的针对碳水化合物抗原的单克隆抗体的发现平台
  • 批准号:
    10574738
  • 财政年份:
    2023
  • 资助金额:
    $ 16.8万
  • 项目类别:
Rationally designed ribozymes switched-on by nucleotide repeat extensions as potential tools of genetic therapy for repeat expansion disorders.
合理设计的核酶通过核苷酸重复延伸开启,作为重复扩张疾病基因治疗的潜在工具。
  • 批准号:
    472596
  • 财政年份:
    2022
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Operating Grants
Incorporating intrinsically disordered regions into rationally designed proteins that target DNA
将本质上无序的区域纳入合理设计的靶向 DNA 的蛋白质中
  • 批准号:
    RGPIN-2020-05854
  • 财政年份:
    2022
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Discovery Grants Program - Individual
Rationally designed ribozymes switched-on by nucleotide repeat extensions as potential tools of genetic therapy for repeat expansion disorders.
合理设计的核酶通过核苷酸重复延伸开启,作为重复扩张疾病基因治疗的潜在工具。
  • 批准号:
    464593
  • 财政年份:
    2022
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Operating Grants
Incorporating intrinsically disordered regions into rationally designed proteins that target DNA
将本质上无序的区域纳入合理设计的靶向 DNA 的蛋白质中
  • 批准号:
    RGPIN-2020-05854
  • 财政年份:
    2021
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了