The Regularity Method and Problems in Extremal Combinatorics

极值组合学中的正则方法及问题

基本信息

  • 批准号:
    0800070
  • 负责人:
  • 金额:
    $ 36.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-06-01 至 2014-05-31
  • 项目状态:
    已结题

项目摘要

ABSTRACTPrincipal Investigator: Rodl, Vojtech Proposal Number: DMS - 0800070Institution: Emory UniversityTitle: The Regularity Method and Problems in Extremal CombinatoricsThe PI proposes research in the area of discrete mathematics with emphasis on Ramsey theory and extremal and probabilistic combinatorics. The project seeks further development of the Regularity Method that has had many successes over the past 30 years, and applications of the method to a variety of problems in extremal combinatorics and Ramsey theory. The PI also plans to use methods of probabilistic combinatorics to attack some older problems in Ramsey theory. In the area of quasi-randomness, one of the PI's long-term projects is to investigate the properties of quasi-random sparse graphs and uniform hypergraphs.Over the last two decades, the use of probability has become one of the most powerful tools in discrete mathematics and computer science. The understanding of discrete, combinatorial structures is very important in modern science and technology. For instance, probabilistic reasoning is crucial for the design of large networks and algorithms. In discrete mathematics, one of the most successful techniques is the probabilistic method, which enables one to prove results about deterministic objects. One of the more recent techniques employs the idea of quasi-randomness. Quasi-random properties that enable one to find and enumerate sub-objects of a given type are of particular interest. The main part of this proposal aims to extend the applicability of the current techniques to a broader class of combinatorial structures. The results should lead to applications in various areas such as phase transition, game theory or theoretical computer science.
主要研究者:Rodl,Vojtech 提案编号:DMS -0800070机构:埃默里大学标题:极值组合学中的正则性方法和问题PI提出了离散数学领域的研究,重点是拉姆齐理论和极值和概率组合学。该项目旨在进一步发展在过去30年中取得了许多成功的正则方法,并将该方法应用于极值组合学和拉姆齐理论中的各种问题。PI还计划使用概率组合学的方法来解决拉姆齐理论中的一些老问题。在准随机性领域,PI的长期项目之一是研究准随机稀疏图和一致超图的性质。在过去的二十年里,概率的使用已经成为离散数学和计算机科学中最强大的工具之一。对离散组合结构的理解在现代科学技术中非常重要。例如,概率推理对于大型网络和算法的设计至关重要。在离散数学中,最成功的技术之一是概率方法,它使人们能够证明关于确定性对象的结果。最近的一种技术采用了准随机性的思想。使人们能够找到和枚举给定类型的子对象的准随机属性是特别感兴趣的。该提案的主要部分旨在将当前技术的适用性扩展到更广泛的组合结构类。结果应该导致在各个领域的应用,如相变,博弈论或理论计算机科学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vojtech Rodl其他文献

Enumeration of order preserving maps

Vojtech Rodl的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vojtech Rodl', 18)}}的其他基金

Collaborative Research: Extremal and Ramsey Problems for Graphs and Hypergraphs
协作研究:图和超图的极值问题和 Ramsey 问题
  • 批准号:
    2300347
  • 财政年份:
    2023
  • 资助金额:
    $ 36.89万
  • 项目类别:
    Continuing Grant
Extremal and Ramsey-Type Problems for Graphs and Hypergraphs
图和超图的极值问题和 Ramsey 型问题
  • 批准号:
    1764385
  • 财政年份:
    2018
  • 资助金额:
    $ 36.89万
  • 项目类别:
    Continuing Grant
Hypergraphs, Ramsey Theory and Extremal Combinatorics
超图、拉姆齐理论和极值组合
  • 批准号:
    1301698
  • 财政年份:
    2013
  • 资助金额:
    $ 36.89万
  • 项目类别:
    Continuing Grant
Randomness and Quasi-randomness of Graphs and Set Systems
图和集合系统的随机性和拟随机性
  • 批准号:
    0300529
  • 财政年份:
    2003
  • 资助金额:
    $ 36.89万
  • 项目类别:
    Continuing Grant
U.S.-Brazil Cooperative Research: Problems on Random Graphs (Structures) and Set Systems
美国-巴西合作研究:随机图(结构)和集合系统问题
  • 批准号:
    0072064
  • 财政年份:
    2000
  • 资助金额:
    $ 36.89万
  • 项目类别:
    Standard Grant
Quasi-randomness and The Regularity Lemma
准随机性和规律性引理
  • 批准号:
    0071261
  • 财政年份:
    2000
  • 资助金额:
    $ 36.89万
  • 项目类别:
    Continuing Grant
Research in Combinatorics
组合学研究
  • 批准号:
    9704114
  • 财政年份:
    1997
  • 资助金额:
    $ 36.89万
  • 项目类别:
    Standard Grant
U.S.-Polish Research on "Probabilistic Combinatorics"
美波“概率组合学”研究
  • 批准号:
    9406971
  • 财政年份:
    1994
  • 资助金额:
    $ 36.89万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Problems in Combinatorics
数学科学:组合数学问题
  • 批准号:
    9401559
  • 财政年份:
    1994
  • 资助金额:
    $ 36.89万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Problems in Ramsey Theory
数学科学:拉姆齐理论中的问题
  • 批准号:
    9011850
  • 财政年份:
    1990
  • 资助金额:
    $ 36.89万
  • 项目类别:
    Standard Grant

相似国自然基金

偏线性分位数样本截取和选择模型的估计与应用—基于非参数筛分法(Sieve Method)
  • 批准号:
    72273091
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目

相似海外基金

Study for solving problems related to multimorbid conditions using an innovative QOL evaluation method
使用创新的生活质量评估方法解决与多病相关的问题的研究
  • 批准号:
    23H03127
  • 财政年份:
    2023
  • 资助金额:
    $ 36.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A Parallel, High-Fidelity Coupled Machine Learning/ CFD Solver Method for Solving Exascale CFD Problems with Turbulence Damping at the Liquid-Gas Inte
一种并行、高保真耦合机器学习/CFD 求解器方法,用于解决液气界面湍流阻尼的百亿亿次 CFD 问题
  • 批准号:
    2883937
  • 财政年份:
    2023
  • 资助金额:
    $ 36.89万
  • 项目类别:
    Studentship
Development of a bottom-up explainable discriminator construction method and its application to social-infrastructure problems
自下而上的可解释判别器构建方法的开发及其在社会基础设施问题中的应用
  • 批准号:
    23K11248
  • 财政年份:
    2023
  • 资助金额:
    $ 36.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of an educational method for the new aerospace age that includes the individual fabrication of mechanical design problems and the understanding of their performance.
开发新航空航天时代的教育方法,包括机械设计问题的单独制作和对其性能的理解。
  • 批准号:
    22K02941
  • 财政年份:
    2022
  • 资助金额:
    $ 36.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
An improved dual projected gradient method for log-determinant semidefinite problems
解决对数行列式半定问题的改进对偶投影梯度法
  • 批准号:
    21K11767
  • 财政年份:
    2021
  • 资助金额:
    $ 36.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of an energy conservative accurate particle method for fluid-structure interaction problems
针对流固耦合问题的能量守恒精确粒子方法的开发
  • 批准号:
    21K14250
  • 财政年份:
    2021
  • 资助金额:
    $ 36.89万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Envisioned world problems with functional approaches: Functional Analysis Resonance Method and Discrete-Event Simulation modelling for system design, verification, and improvement
使用功能方法设想世界问题:用于系统设计、验证和改进的功能分析共振方法和离散事件仿真建模
  • 批准号:
    21F21757
  • 财政年份:
    2021
  • 资助金额:
    $ 36.89万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of analysis method for critical problems with logarithmic singularity
对数奇异性关键问题分析方法的发展
  • 批准号:
    19KK0349
  • 财政年份:
    2020
  • 资助金额:
    $ 36.89万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Adjoint sensitivity analysis based on lattice Boltzmann method for flow-induced sound problems
基于格子玻尔兹曼法的流致声问题伴随灵敏度分析
  • 批准号:
    20K22397
  • 财政年份:
    2020
  • 资助金额:
    $ 36.89万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Development of supercritical fluid extraction method to solve various problems of entrainer
开发超临界流体萃取方法解决夹带剂的各种问题
  • 批准号:
    20K05192
  • 财政年份:
    2020
  • 资助金额:
    $ 36.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了