Evolution Problems and Free Boundaries

进化问题和自由边界

基本信息

  • 批准号:
    0800245
  • 负责人:
  • 金额:
    $ 17.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-05-01 至 2012-04-30
  • 项目状态:
    已结题

项目摘要

The project consists of two main topics: (1) Free boundary problems for elliptic and degenerate elliptic nonlinear equations and systems arising in the models of compressible fluid dynamics. The goal is to study existence, uniqueness and regularity and geometric properties of transonic shocks arising in self-similar shock reflection for potential flows and full compressible Euler system. Euler system for potential flow consists of the conservation law of mass and Bernoulli law for the velocity. In the case self-similar flow the system can be reduced to a second-order, nonlinear equation of mixed elliptic-hyperbolic type for the velocity potential. Transonic shocks are discontinuities in the gradient of a solution, such that the type of equation changes from hyperbolic to elliptic across the shock. Transonic shocks arise in many situations of physical importance. Boundary value problems for transonic shock solutions can be formulated as free boundary problems for the elliptic phase. This framework will be applied to the study of self-similar shock reflection for potential flow. Shock reflection problem will also be considered for full compressible Euler system, which is a more physical model. This leads to the study of free boundary problems for a coupled system consisting of a nonlinear second order equation of mixed elliptic-hyperbolic type and transport equations. One of the goals is to verify von Neumann criteria for transition between regular and Mach reflection. (2) Another area of research is to study the system of semigeostrophic equations, a model of large-scale atmosphere/ocean flows, using methods of Monge-Kantorovich mass transport. In recent years a progress was made in the study of semigeostrophic system with constant Coriolis parameter in the flat geometry. We will study a more physically relevant case of the system with variable Coriolis parameter on a manifold. This includes study of new Monge-Kantorovich-type problems, and Monge-Ampere equations associated with these problems.Free boundary problems arise naturally in many models in physics, fluid dynamics, economics. Free boundaries correspond to sharp changes in the variables describing the problem. Significant progress has been made during last several decades in the study of free boundary problems. However in the case of nonlinear partial differential equations and especially equations of mixed type many important questions are yet to be studied. This is the first theme of the project. Better understanding of properties of free boundaries, such as stability, regularity and geometric properties, makes possible to understand complex phenomena in models and applications. We plan to study transonic shocks in a flow of compressible fluid or gas. Another area of the project is optimal transportation problem. Recent progress in Monge-Kantorovich mass transport problem includes many important applications to nonlinear partial differential equations, in particular to the models for front formation in the atmosphere, kinetic theory, fluid flow, elastic crystals, granular materials, and microeconomic decision problems. We plan to work on the applications of mass transportation problem to the models of atmospheric flows. The broader impact resulting from the project will be achieved since the project addresses the problems important in engineering and meteorology. Also, graduate students will be involved in the work on the project.
该项目包括两个主要课题:(1)可压缩流体动力学模型中椭圆和退化椭圆非线性方程和方程组的自由边界问题。本文的目的是研究势流和完全可压缩Euler方程组在自相似激波反射中产生的跨音速激波的存在性、唯一性、正则性和几何性质。势流的欧拉体系由质量守恒定律和速度的伯努利定律组成。在自相似流的情况下,该系统可以归结为一个二阶的混合椭圆-双曲型非线性方程的速度势。跨音速激波是解的梯度的不连续性,使得方程的类型在激波上从双曲型变为椭圆型。跨音速冲击在许多物理上重要的情况下都会出现。跨音速激波解的边值问题可以表述为椭圆相的自由边界问题。该框架将被应用于势流自相似激波反射的研究。激波反射问题也将考虑到全可压缩欧拉系统,这是一个更物理的模型。 这导致了研究的自由边界问题的一个非线性二阶混合椭圆双曲型方程和迁移方程的耦合系统。其中一个目标是验证冯诺依曼标准之间的正常和马赫反射的过渡。(2)另一个研究领域是研究半地转方程系统,这是一个使用Monge-Kantorovich质量输运方法的大规模大气/海洋流动模型。近年来,在平坦几何条件下,具有常数科里奥利参数的半地转系统的研究取得了一些进展。我们将研究流形上具有可变科里奥利参数的系统的一个更物理相关的情况。这包括研究新的Monge-Kantorovich型问题,以及与这些问题相关的Monge-Ampere方程。自由边界问题在物理学、流体力学、经济学中的许多模型中自然出现。自由边界对应于描述问题的变量的急剧变化。近几十年来,自由边界问题的研究取得了重大进展。然而,对于非线性偏微分方程,特别是混合型方程,还有许多重要的问题有待研究。这是该项目的第一个主题。更好地理解自由边界的性质,如稳定性,规则性和几何性质,使理解模型和应用中的复杂现象成为可能。我们计划研究可压缩流体或气体流中的跨音速冲击。该项目的另一个领域是最优运输问题。Monge-Kantorovich质量输运问题的最新进展包括非线性偏微分方程的许多重要应用,特别是在大气锋面形成模型、动力学理论、流体流动、弹性晶体、颗粒物质和微观经济决策问题等方面。我们计划研究质量输运问题在大气流动模型中的应用。该项目将产生更广泛的影响,因为该项目涉及工程和气象学方面的重要问题。此外,研究生将参与该项目的工作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mikhail Feldman其他文献

Mikhail Feldman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mikhail Feldman', 18)}}的其他基金

DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
  • 批准号:
    2219391
  • 财政年份:
    2022
  • 资助金额:
    $ 17.42万
  • 项目类别:
    Standard Grant
Existence and Stability Analysis for Nonlinear Free Boundary and Evolution Problems
非线性自由边界和演化问题的存在性和稳定性分析
  • 批准号:
    2054689
  • 财政年份:
    2021
  • 资助金额:
    $ 17.42万
  • 项目类别:
    Standard Grant
Nonlinear Free Boundary and Evolution Problems
非线性自由边界和演化问题
  • 批准号:
    1764278
  • 财政年份:
    2018
  • 资助金额:
    $ 17.42万
  • 项目类别:
    Continuing Grant
Nonlinear free boundary and evolution problems
非线性自由边界和演化问题
  • 批准号:
    1401490
  • 财政年份:
    2014
  • 资助金额:
    $ 17.42万
  • 项目类别:
    Standard Grant
Free boundary and evolution problems arising in gas dynamics
气体动力学中出现的自由边界和演化问题
  • 批准号:
    1101260
  • 财政年份:
    2011
  • 资助金额:
    $ 17.42万
  • 项目类别:
    Standard Grant
Free Boundary Problems, Mass Transfer and Nonlinear Dynamics
自由边界问题、传质和非线性动力学
  • 批准号:
    0500722
  • 财政年份:
    2005
  • 资助金额:
    $ 17.42万
  • 项目类别:
    Standard Grant
Free Boundary Problems and Mass Transfer
自由边界问题和传质
  • 批准号:
    0200644
  • 财政年份:
    2002
  • 资助金额:
    $ 17.42万
  • 项目类别:
    Standard Grant
Mass Transfer and Evolution Problems, Free Boundary Problems
传质和进化问题、自由边界问题
  • 批准号:
    0096090
  • 财政年份:
    1999
  • 资助金额:
    $ 17.42万
  • 项目类别:
    Standard Grant
Mass Transfer and Evolution Problems, Free Boundary Problems
传质和进化问题、自由边界问题
  • 批准号:
    9970577
  • 财政年份:
    1999
  • 资助金额:
    $ 17.42万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Mass Transfer, Heat Flows with Constraints, Moving and Free Boundaries
数学科学:传质、约束热流、移动边界和自由边界
  • 批准号:
    9623276
  • 财政年份:
    1996
  • 资助金额:
    $ 17.42万
  • 项目类别:
    Continuing Grant

相似海外基金

Existence and Stability Analysis for Nonlinear Free Boundary and Evolution Problems
非线性自由边界和演化问题的存在性和稳定性分析
  • 批准号:
    2054689
  • 财政年份:
    2021
  • 资助金额:
    $ 17.42万
  • 项目类别:
    Standard Grant
Nonlinear Free Boundary and Evolution Problems
非线性自由边界和演化问题
  • 批准号:
    1764278
  • 财政年份:
    2018
  • 资助金额:
    $ 17.42万
  • 项目类别:
    Continuing Grant
Nonlinear free boundary and evolution problems
非线性自由边界和演化问题
  • 批准号:
    1401490
  • 财政年份:
    2014
  • 资助金额:
    $ 17.42万
  • 项目类别:
    Standard Grant
Regularity properties of stationary and evolution free boundary problems
平稳和自由演化边界问题的正则性
  • 批准号:
    1301535
  • 财政年份:
    2013
  • 资助金额:
    $ 17.42万
  • 项目类别:
    Continuing Grant
Free boundary problems for capillary surfaces and other nonlinear evolution PDE
毛细管表面和其他非线性演化偏微分方程的自由边界问题
  • 批准号:
    1201426
  • 财政年份:
    2012
  • 资助金额:
    $ 17.42万
  • 项目类别:
    Continuing Grant
Free boundary and evolution problems arising in gas dynamics
气体动力学中出现的自由边界和演化问题
  • 批准号:
    1101260
  • 财政年份:
    2011
  • 资助金额:
    $ 17.42万
  • 项目类别:
    Standard Grant
Mass Transfer and Evolution Problems, Free Boundary Problems
传质和进化问题、自由边界问题
  • 批准号:
    0096090
  • 财政年份:
    1999
  • 资助金额:
    $ 17.42万
  • 项目类别:
    Standard Grant
Mass Transfer and Evolution Problems, Free Boundary Problems
传质和进化问题、自由边界问题
  • 批准号:
    9970577
  • 财政年份:
    1999
  • 资助金额:
    $ 17.42万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Evolution Free Boundary Problems and Regularity Theory
数学科学:无进化边界问题和正则性理论
  • 批准号:
    8502297
  • 财政年份:
    1985
  • 资助金额:
    $ 17.42万
  • 项目类别:
    Standard Grant
Doubly Nonlinear Evolution Equations and Free-Boundary Problems (Mathematical Sciences)
双非线性演化方程和自由边界问题(数学科学)
  • 批准号:
    8202100
  • 财政年份:
    1982
  • 资助金额:
    $ 17.42万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了