Free Boundary Problems and Mass Transfer
自由边界问题和传质
基本信息
- 批准号:0200644
- 负责人:
- 金额:$ 10.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-05-15 至 2005-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PI: Mikhail Feldman, University of WisconsinDMS-0200644ABSTRACT--------------------------------------------------The project consists of two main topics: (1) Free boundaryproblems for nonlinear elliptic equations. One of objectivesis to develop techniques for studying free boundary problemsarising in the models of compressible fluid dynamics, inparticular to study existence, uniqueness and stability ofmultidimensional transonic shocks for Euler equations forsteady and self-similar potential flows. Euler equations canbe written as a single second order, nonlinear elliptic-hyperbolicequation of mixed type for the velocity potential, if the flowis steady or self-similar. Transonic shocks are discontinuitiesin the gradient of the solution such that the type of equationchanges from hyperbolic to elliptic across the shock surface.Transonic shocks arise in many situations of physical importance(steady supersonic flows around an obstacle, shock reflection forself-similar flows). (2) Monge-Kantorovich mass transfer problem.The questions to study include geometric and measure-theoreticproperties of solutions, and applications to partial differentialequations.Free boundary problems arise naturally in many models in physics,fluid dynamics, economics. Free boundaries correspond to sharpchanges in the variables describing the problem. Significantprogress has been made during last several decades in the studyof free boundary problems. However in the case of nonlinear partialdifferential equations many important questions are yet to be studied.This is the first theme of the project. Better understanding ofproperties of free boundaries, such as stability, makes possible tounderstand complex phenomena in models and applications. We plan tostudy transonic shocks in a flow of compressible fluid or gas.Another area of the project is optimal transportation problem.Recently many fundamental properties and important applications ofthis problem within and beyond mathematics were discovered, inparticular its connections to nonlinear partial differentialequations, and applications in models for front formation in theatmosphere, kinetic theory, fluid flow, elastic crystals, granularmaterials, and microeconomic decision problems. We plan to workon theory and applications of optimal transportation problem.
摘要--------------------------------------------------本课题包括两个主要课题:(1)非线性椭圆方程的自由边界问题。目的之一是发展研究可压缩流体动力学模型中自由边界问题的技术,特别是研究稳定和自相似势流的欧拉方程的多维跨音速激波的存在性、唯一性和稳定性。如果流动是稳定的或自相似的,欧拉方程可以写成速度势的单二阶非线性混合椭圆双曲方程。跨音速激波在解的梯度上是不连续的,使得方程的类型在激波表面上从双曲型变为椭圆型。跨音速激波出现在许多重要的物理情况下(围绕障碍物的稳定超音速流动,自相似流动的激波反射)。(2) Monge-Kantorovich传质问题。要研究的问题包括解的几何和测量理论性质,以及在偏微分方程中的应用。自由边界问题在物理学、流体动力学、经济学的许多模型中自然出现。自由边界对应于描述问题的变量的急剧变化。近几十年来,自由边界问题的研究取得了重大进展。然而,对于非线性偏微分方程,还有许多重要的问题有待研究。这是该项目的第一个主题。更好地理解自由边界的性质,如稳定性,使理解模型和应用中的复杂现象成为可能。我们计划研究可压缩流体或气体流动中的跨音速激波。项目的另一个领域是最优运输问题。最近,这个问题在数学内外的许多基本性质和重要应用被发现,特别是它与非线性偏微分方程的联系,以及在大气锋面形成模型、动力学理论、流体流动、弹性晶体、颗粒材料和微观经济决策问题中的应用。本论文拟开展最优运输问题的理论与应用研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mikhail Feldman其他文献
Mikhail Feldman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mikhail Feldman', 18)}}的其他基金
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
- 批准号:
2219391 - 财政年份:2022
- 资助金额:
$ 10.18万 - 项目类别:
Standard Grant
Existence and Stability Analysis for Nonlinear Free Boundary and Evolution Problems
非线性自由边界和演化问题的存在性和稳定性分析
- 批准号:
2054689 - 财政年份:2021
- 资助金额:
$ 10.18万 - 项目类别:
Standard Grant
Nonlinear Free Boundary and Evolution Problems
非线性自由边界和演化问题
- 批准号:
1764278 - 财政年份:2018
- 资助金额:
$ 10.18万 - 项目类别:
Continuing Grant
Nonlinear free boundary and evolution problems
非线性自由边界和演化问题
- 批准号:
1401490 - 财政年份:2014
- 资助金额:
$ 10.18万 - 项目类别:
Standard Grant
Free boundary and evolution problems arising in gas dynamics
气体动力学中出现的自由边界和演化问题
- 批准号:
1101260 - 财政年份:2011
- 资助金额:
$ 10.18万 - 项目类别:
Standard Grant
Evolution Problems and Free Boundaries
进化问题和自由边界
- 批准号:
0800245 - 财政年份:2008
- 资助金额:
$ 10.18万 - 项目类别:
Continuing Grant
Free Boundary Problems, Mass Transfer and Nonlinear Dynamics
自由边界问题、传质和非线性动力学
- 批准号:
0500722 - 财政年份:2005
- 资助金额:
$ 10.18万 - 项目类别:
Standard Grant
Mass Transfer and Evolution Problems, Free Boundary Problems
传质和进化问题、自由边界问题
- 批准号:
0096090 - 财政年份:1999
- 资助金额:
$ 10.18万 - 项目类别:
Standard Grant
Mass Transfer and Evolution Problems, Free Boundary Problems
传质和进化问题、自由边界问题
- 批准号:
9970577 - 财政年份:1999
- 资助金额:
$ 10.18万 - 项目类别:
Standard Grant
Mathematical Sciences: Mass Transfer, Heat Flows with Constraints, Moving and Free Boundaries
数学科学:传质、约束热流、移动边界和自由边界
- 批准号:
9623276 - 财政年份:1996
- 资助金额:
$ 10.18万 - 项目类别:
Continuing Grant
相似国自然基金
水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
- 批准号:32070202
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
Parabolic and elliptic boundary value and free boundary problems
抛物线和椭圆边值以及自由边界问题
- 批准号:
2349846 - 财政年份:2024
- 资助金额:
$ 10.18万 - 项目类别:
Standard Grant
Well-Posedness and Singularity Formation in Applied Free Boundary Problems
应用自由边界问题中的适定性和奇异性形成
- 批准号:
2307638 - 财政年份:2023
- 资助金额:
$ 10.18万 - 项目类别:
Standard Grant
Shape Optimization, Free Boundary Problems, and Geometric Measure Theory
形状优化、自由边界问题和几何测量理论
- 批准号:
2247096 - 财政年份:2023
- 资助金额:
$ 10.18万 - 项目类别:
Standard Grant
Free Boundary Problems for Aggregation Phenomena and other Partial Differential Equations
聚集现象和其他偏微分方程的自由边界问题
- 批准号:
2307342 - 财政年份:2023
- 资助金额:
$ 10.18万 - 项目类别:
Standard Grant
Dynamical analysis of foliated structure in free boundary problems
自由边界问题中叶状结构的动力学分析
- 批准号:
22KK0230 - 财政年份:2023
- 资助金额:
$ 10.18万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Mathematical Analysis of Fluid Free Boundary Problems
无流体边界问题的数学分析
- 批准号:
2153992 - 财政年份:2022
- 资助金额:
$ 10.18万 - 项目类别:
Standard Grant
Asymptotic analysis and behavior of free boundary for nonlinear parabolic problems
非线性抛物线问题的渐近分析和自由边界行为
- 批准号:
22K03387 - 财政年份:2022
- 资助金额:
$ 10.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Regularity and Stability Analysis of Free-Boundary Problems in Fluid Dynamics
流体动力学自由边界问题的规律性和稳定性分析
- 批准号:
2205710 - 财政年份:2022
- 资助金额:
$ 10.18万 - 项目类别:
Standard Grant
Probabilistic Approach to Singular Free Boundary Problems and Applications
奇异自由边界问题的概率方法及其应用
- 批准号:
2108680 - 财政年份:2021
- 资助金额:
$ 10.18万 - 项目类别:
Continuing Grant














{{item.name}}会员




