Mathematical Sciences: Mass Transfer, Heat Flows with Constraints, Moving and Free Boundaries
数学科学:传质、约束热流、移动边界和自由边界
基本信息
- 批准号:9623276
- 负责人:
- 金额:$ 7.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-08-01 至 2000-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract Feldman The project is devoted to the study of variational problems with constraints, moving and free boundaries. The first area of the research is the study of evolution problems with pointwise gradient constraints, related to Monge-Kantorovich mass transfer problem. One such evolution problem arises as a model of collapsing sandpiles, and there are other examples, including models of compression molding and type II superconductivity. In the joint work of the proposer with L.C.Evans and R.F.Gariepy, the collapsing sandpiles model was related to a geometric evolution problem where the velocity of a moving surface at each point is determined by both local and nonlocal geometry of the surface. This geometric problem possesses some "parabolicity" properties of nonlocal nature. The main idea of the proposed research is to construct viscosity solutions of the geometric evolution problem, to study regularity and asymptotic properties of these solutions, and to study connections of the geometric evolution problem with the original variational evolution problem. The second area of the research is the study of another class of variational evolution problems with constraints - heat flows for harmonic maps. In the previous work the proposer has proved partial regularity for heat flows into spheres satisfying some stability condition - a variational condition of entropy type. The next steps include the study of existence and uniqueness of such heat flows, and the study of heat flows into compact manifolds other then sphere. The third area of research is to try to extend some of celebrated results of L.Caffarelli on regularity of free boundaries in two-phase problems for linear equations to some classes of nonlinear elliptic equations. In previous work the proposer proved regularity for anisotropic two-phase problem with Lipschitz free boundary, i.e., in the case when the solutions satisfy two different linear elliptic equations in two subregions separated by free boundary. Many problems in science and engineering lead naturally to mathematical models that have the form of variational evolution problems with constraints. One class of such problems, the evolution problems with pointwise gradient constraints, includes models of collapsing sandpiles, of compression molding, of type II superconductivity. Qualitative properties of solutions of evolution problems are of interest by itself and with respect to possible applications. Typical properties of variational evolution problems with pointwise gradient constraints include formation of moving free boundaries. The first area of the proposed research is the study of these moving boundaries by relating them to a geometric evolution problem for a moving surface and studying solutions of this geometric problem. Free boundary problems arise also in the static case. In this case the free boundaries can be viewed as a model of the interface between two different substances. The second area of the research is the study of regularity (smoothness) properties of such boundaries for some nonlinear static problems. Another class of variational evolution problems with constraints is heat flows for harmonic maps. Such problems arise in geometry and their solutions have interesting properties. These heat flows represent one of the models of liquid crystals. The third area of the research is the study of existence and uniqueness of heat flows for harmonic maps of certain classes.
抽象费尔德曼 该项目致力于研究具有约束、移动和自由边界的变分问题。研究的第一个领域是与Monge-Kantorovich质量传递问题相关的逐点梯度约束的演化问题的研究。一个这样的演化问题出现作为崩溃沙堆的模型,还有其他的例子,包括压缩成型和II型超导模型。在 在该模型的提出者与L. C. Evans和R. F. Garibrant的联合工作中,崩塌沙堆模型与几何演化问题有关,其中移动表面在每个点处的速度由表面的局部和非局部几何形状决定。这个几何问题具有一些非局部性质的“抛物线”性质。本研究的主要思想是构造几何发展问题的粘性解,研究这些解的正则性和渐近性质,并研究几何发展问题与原变分发展问题之间的联系.研究的第二个领域是另一类带约束的变分发展问题-调和映射的热流。在以前的工作中,提出者证明了热流进入满足某种稳定性条件--熵型变分条件的球体的部分正则性。 接下来的步骤包括研究这种热流的存在性和唯一性,以及研究热流进入紧流形而不是球。第三个研究领域是试图将L.Caffarelli关于线性方程两相问题自由边界正则性的一些著名结果推广到某些非线性椭圆型方程。在以前的工作中,提出者证明了具有Lipschitz自由边界的各向异性两相问题的正则性,即,当解在由自由边界分隔的两个子区域内满足两个不同的线性椭圆方程时, 科学和工程中的许多问题自然会导致数学模型,这些模型具有带约束的变分演化问题的形式。一类这样的问题,逐点梯度约束的演化问题,包括模型的崩溃沙堆,压缩成型,II型超导。演化问题解的定性性质本身和关于可能的 应用.具有逐点梯度约束的变分演化问题的典型性质包括移动自由边界的形成。建议的研究的第一个领域是这些移动边界的研究,将它们与一个移动表面的几何演化问题,并研究这个几何问题的解决方案。免费 在静态情况下也会出现边界问题。在这种情况下,自由边界可以被视为两种不同物质之间的界面模型。研究的第二个领域是研究某些非线性静力问题的这种边界的正则性(光滑性)。另一类带约束的变分发展问题是调和映射的热流问题。这类问题出现在几何中,其解具有有趣的性质。这些热流代表了液晶的一种模型。研究的第三个方面是研究热流的存在性和唯一性 某些类的调和映射。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mikhail Feldman其他文献
Mikhail Feldman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mikhail Feldman', 18)}}的其他基金
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
- 批准号:
2219391 - 财政年份:2022
- 资助金额:
$ 7.97万 - 项目类别:
Standard Grant
Existence and Stability Analysis for Nonlinear Free Boundary and Evolution Problems
非线性自由边界和演化问题的存在性和稳定性分析
- 批准号:
2054689 - 财政年份:2021
- 资助金额:
$ 7.97万 - 项目类别:
Standard Grant
Nonlinear Free Boundary and Evolution Problems
非线性自由边界和演化问题
- 批准号:
1764278 - 财政年份:2018
- 资助金额:
$ 7.97万 - 项目类别:
Continuing Grant
Nonlinear free boundary and evolution problems
非线性自由边界和演化问题
- 批准号:
1401490 - 财政年份:2014
- 资助金额:
$ 7.97万 - 项目类别:
Standard Grant
Free boundary and evolution problems arising in gas dynamics
气体动力学中出现的自由边界和演化问题
- 批准号:
1101260 - 财政年份:2011
- 资助金额:
$ 7.97万 - 项目类别:
Standard Grant
Evolution Problems and Free Boundaries
进化问题和自由边界
- 批准号:
0800245 - 财政年份:2008
- 资助金额:
$ 7.97万 - 项目类别:
Continuing Grant
Free Boundary Problems, Mass Transfer and Nonlinear Dynamics
自由边界问题、传质和非线性动力学
- 批准号:
0500722 - 财政年份:2005
- 资助金额:
$ 7.97万 - 项目类别:
Standard Grant
Free Boundary Problems and Mass Transfer
自由边界问题和传质
- 批准号:
0200644 - 财政年份:2002
- 资助金额:
$ 7.97万 - 项目类别:
Standard Grant
Mass Transfer and Evolution Problems, Free Boundary Problems
传质和进化问题、自由边界问题
- 批准号:
0096090 - 财政年份:1999
- 资助金额:
$ 7.97万 - 项目类别:
Standard Grant
Mass Transfer and Evolution Problems, Free Boundary Problems
传质和进化问题、自由边界问题
- 批准号:
9970577 - 财政年份:1999
- 资助金额:
$ 7.97万 - 项目类别:
Standard Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Operation of a National Ocean Sciences Accelerator Mass Spec
国家海洋科学加速器质谱仪的运行
- 批准号:
2244731 - 财政年份:2023
- 资助金额:
$ 7.97万 - 项目类别:
Cooperative Agreement
High performance mass spectrometry: applications for the Cambridge biological sciences community
高性能质谱:剑桥生物科学界的应用
- 批准号:
BB/W019620/1 - 财政年份:2022
- 资助金额:
$ 7.97万 - 项目类别:
Research Grant
Sociology of Knowledge on Ideology and Elitism of Social Sciences in Crowd, Mass society and Populism studies.
群众社会科学的意识形态和精英主义、大众社会和民粹主义研究的知识社会学。
- 批准号:
22K01865 - 财政年份:2022
- 资助金额:
$ 7.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
MRI: Acquisition of a High-Resolution Mass Spectrometer for Research in Chemical Synthesis, Materials, and Biological Sciences
MRI:购买高分辨率质谱仪用于化学合成、材料和生物科学研究
- 批准号:
2215975 - 财政年份:2022
- 资助金额:
$ 7.97万 - 项目类别:
Standard Grant
MRI: Acquisition of an Ultra High Performance Liquid Chromatograph with a Tandem High Resolution Mass Spectrometer for Research and Training in Basic and Applied Sciences
MRI:购买带有串联高分辨率质谱仪的超高性能液相色谱仪,用于基础和应用科学的研究和培训
- 批准号:
2216092 - 财政年份:2022
- 资助金额:
$ 7.97万 - 项目类别:
Standard Grant
MRI: Acquisition of a High Resolution Mass Spectrometer, Liquid Chromatography System to Support Research and Teaching within the Sciences
MRI:购置高分辨率质谱仪、液相色谱系统以支持科学研究和教学
- 批准号:
2116635 - 财政年份:2021
- 资助金额:
$ 7.97万 - 项目类别:
Standard Grant
MRI: Acquisition of a Liquid Chromatograph, Quadrupole, Time-of-Flight Mass Spectrometer to Enhance Undergraduate Research and Education in the Chemical and Biochemical Sciences
MRI:购买液相色谱仪、四极杆、飞行时间质谱仪,以加强化学和生物化学科学方面的本科研究和教育
- 批准号:
2017788 - 财政年份:2020
- 资助金额:
$ 7.97万 - 项目类别:
Standard Grant
Development of an ultrasensitive noble gas mass spectrometer equipped with a compressor ion source to open a new field in earth and planetary sciences
开发配备压缩机离子源的超灵敏惰性气体质谱仪,开辟地球和行星科学的新领域
- 批准号:
20K20529 - 财政年份:2020
- 资助金额:
$ 7.97万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Acquisition of a gas chromatograph-mass spectrometer system at Department of Earth, Environmental and Planetary Sciences, Brown University
布朗大学地球、环境和行星科学系购置气相色谱-质谱仪系统
- 批准号:
1801017 - 财政年份:2019
- 资助金额:
$ 7.97万 - 项目类别:
Standard Grant
MRI: Acquisition of a Shared Multi Collector Inductively Coupled Plasma Mass Spectrometer for Ocean, Earth, Environmental, and Geobiological Sciences in Southern California
MRI:购买一台共享多收集器电感耦合等离子体质谱仪,用于南加州的海洋、地球、环境和地球生物科学
- 批准号:
1920355 - 财政年份:2019
- 资助金额:
$ 7.97万 - 项目类别:
Standard Grant














{{item.name}}会员




