Free Boundary Problems, Mass Transfer and Nonlinear Dynamics

自由边界问题、传质和非线性动力学

基本信息

  • 批准号:
    0500722
  • 负责人:
  • 金额:
    $ 9.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-05-01 至 2008-04-30
  • 项目状态:
    已结题

项目摘要

''Free boundary problems, mass transfer and nonlinear dynamics''Project AbstractMikhail FeldmanThe project consists of two main topics: (1) Free boundary problems arising in the models of compressible fluid dynamics. The objective is to study existence, uniqueness and stability of multidimensional transonic shocks for Euler equations for steady and self-similar potential flows. Euler equations, consisting of the conservation law of mass and Bernoulli law for the velocity, can be written as a second-order, nonlinear elliptic-hyperbolic equation for the velocity potential, if the flow is steady or self-similar. Transonic shocks are discontinuities in the gradient of a solution, such that the type of equation changes from hyperbolic to elliptic across the shock surface. Transonic shocks arise in many situations of physical importance. Boundary value problems for transonic shock solutions can be formulated as a free boundary problem for the elliptic phase. This framework will be applied to study several important situations, including self-similar shock reflection, and steady transonic shocks in supersonic flow past conical body and smooth convex obstacle. These problems will also be considered in the more general framework of full compressible Euler system.(2) Another area of research is Monge-Kantorovich mass transfer problem. The questions to study include geometric and measure-theoretic properties of optimal maps, and applications to partial differential equations arising in physical models. This includes the system of semigeostrophic equations, a model of large-scale atmosphere/ocean flows. Another area is to study Monge problem on Heisenberg group.Free boundary problems arise naturally in many models in physics, fluid dynamics, economics. Free boundaries correspond to sharp changes in the variables describing the problem. Significant progress has been made during last several decades in the study of free boundary problems. However in the case of nonlinear partial differential equations and especially equations of mixed type many important questions are yet to be studied. This is the first theme of the project. Better understanding of properties of free boundaries, such as stability, makes possible to understand complex phenomena in models and applications. We plan to study transonic shocks in a flow of compressible fluid or gas. Another area of the project is optimal transportation problem. Recently many fundamental properties and important applications of this problem within and beyond mathematics were discovered, in particular its connections to nonlinear partial differential equations, and applications in models for front formation in the atmosphere, kinetic theory, fluid flow, elastic crystals, granular materials, and microeconomic decision problems. We plan to work on theory and applications of optimal transportation problem. A broader impact resulting of the project will be the analysis of some important problems in engineering and meteorology.
项目摘要mikhail feldman该项目主要包括两个主题:(1)可压缩流体动力学模型中出现的自由边界问题。目的是研究稳态和自相似势流欧拉方程多维跨音速激波的存在性、唯一性和稳定性。欧拉方程由质量守恒定律和速度伯努利定律组成,当流体稳定或自相似时,欧拉方程的速度势可以写成二阶非线性椭圆-双曲方程。跨音速激波是溶液梯度中的不连续点,使得方程的类型在激波表面上从双曲型变为椭圆型。跨音速冲击出现在许多重要的物理场合。跨音速激波解的边值问题可以表示为椭圆相的自由边值问题。该框架将应用于研究超声速流过锥形体和光滑凸障碍物时的自相似激波反射和稳定跨声速激波等几个重要情况。这些问题也将在完全可压缩欧拉系统的更一般的框架中考虑。(2)另一个研究领域是Monge-Kantorovich传质问题。要研究的问题包括最优映射的几何和测量理论性质,以及在物理模型中出现的偏微分方程的应用。这包括半匀转方程系统,一个大尺度大气/海洋流动的模型。另一个领域是研究海森堡群上的蒙格问题。自由边界问题在物理学、流体动力学、经济学的许多模型中自然出现。自由边界对应于描述问题的变量的急剧变化。近几十年来,自由边界问题的研究取得了重大进展。但是对于非线性偏微分方程,特别是混合型偏微分方程,还有许多重要的问题有待研究。这是该项目的第一个主题。更好地理解自由边界的性质,例如稳定性,使理解模型和应用中的复杂现象成为可能。我们计划研究可压缩流体或气体流动中的跨音速激波。项目的另一个领域是最优运输问题。最近,这个问题在数学内外的许多基本性质和重要应用被发现,特别是它与非线性偏微分方程的联系,以及在大气锋面形成模型、动力学理论、流体流动、弹性晶体、颗粒材料和微观经济决策问题中的应用。我们计划研究最优运输问题的理论和应用。该项目产生的更广泛的影响将是分析工程和气象学中的一些重要问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mikhail Feldman其他文献

Mikhail Feldman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mikhail Feldman', 18)}}的其他基金

DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
  • 批准号:
    2219391
  • 财政年份:
    2022
  • 资助金额:
    $ 9.8万
  • 项目类别:
    Standard Grant
Existence and Stability Analysis for Nonlinear Free Boundary and Evolution Problems
非线性自由边界和演化问题的存在性和稳定性分析
  • 批准号:
    2054689
  • 财政年份:
    2021
  • 资助金额:
    $ 9.8万
  • 项目类别:
    Standard Grant
Nonlinear Free Boundary and Evolution Problems
非线性自由边界和演化问题
  • 批准号:
    1764278
  • 财政年份:
    2018
  • 资助金额:
    $ 9.8万
  • 项目类别:
    Continuing Grant
Nonlinear free boundary and evolution problems
非线性自由边界和演化问题
  • 批准号:
    1401490
  • 财政年份:
    2014
  • 资助金额:
    $ 9.8万
  • 项目类别:
    Standard Grant
Free boundary and evolution problems arising in gas dynamics
气体动力学中出现的自由边界和演化问题
  • 批准号:
    1101260
  • 财政年份:
    2011
  • 资助金额:
    $ 9.8万
  • 项目类别:
    Standard Grant
Evolution Problems and Free Boundaries
进化问题和自由边界
  • 批准号:
    0800245
  • 财政年份:
    2008
  • 资助金额:
    $ 9.8万
  • 项目类别:
    Continuing Grant
Free Boundary Problems and Mass Transfer
自由边界问题和传质
  • 批准号:
    0200644
  • 财政年份:
    2002
  • 资助金额:
    $ 9.8万
  • 项目类别:
    Standard Grant
Mass Transfer and Evolution Problems, Free Boundary Problems
传质和进化问题、自由边界问题
  • 批准号:
    0096090
  • 财政年份:
    1999
  • 资助金额:
    $ 9.8万
  • 项目类别:
    Standard Grant
Mass Transfer and Evolution Problems, Free Boundary Problems
传质和进化问题、自由边界问题
  • 批准号:
    9970577
  • 财政年份:
    1999
  • 资助金额:
    $ 9.8万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Mass Transfer, Heat Flows with Constraints, Moving and Free Boundaries
数学科学:传质、约束热流、移动边界和自由边界
  • 批准号:
    9623276
  • 财政年份:
    1996
  • 资助金额:
    $ 9.8万
  • 项目类别:
    Continuing Grant

相似国自然基金

水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
  • 批准号:
    32070202
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目

相似海外基金

Parabolic and elliptic boundary value and free boundary problems
抛物线和椭圆边值以及自由边界问题
  • 批准号:
    2349846
  • 财政年份:
    2024
  • 资助金额:
    $ 9.8万
  • 项目类别:
    Standard Grant
Well-Posedness and Singularity Formation in Applied Free Boundary Problems
应用自由边界问题中的适定性和奇异性形成
  • 批准号:
    2307638
  • 财政年份:
    2023
  • 资助金额:
    $ 9.8万
  • 项目类别:
    Standard Grant
Shape Optimization, Free Boundary Problems, and Geometric Measure Theory
形状优化、自由边界问题和几何测量理论
  • 批准号:
    2247096
  • 财政年份:
    2023
  • 资助金额:
    $ 9.8万
  • 项目类别:
    Standard Grant
Free Boundary Problems for Aggregation Phenomena and other Partial Differential Equations
聚集现象和其他偏微分方程的自由边界问题
  • 批准号:
    2307342
  • 财政年份:
    2023
  • 资助金额:
    $ 9.8万
  • 项目类别:
    Standard Grant
Dynamical analysis of foliated structure in free boundary problems
自由边界问题中叶状结构的动力学分析
  • 批准号:
    22KK0230
  • 财政年份:
    2023
  • 资助金额:
    $ 9.8万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Mathematical Analysis of Fluid Free Boundary Problems
无流体边界问题的数学分析
  • 批准号:
    2153992
  • 财政年份:
    2022
  • 资助金额:
    $ 9.8万
  • 项目类别:
    Standard Grant
Asymptotic analysis and behavior of free boundary for nonlinear parabolic problems
非线性抛物线问题的渐近分析和自由边界行为
  • 批准号:
    22K03387
  • 财政年份:
    2022
  • 资助金额:
    $ 9.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Regularity and Stability Analysis of Free-Boundary Problems in Fluid Dynamics
流体动力学自由边界问题的规律性和稳定性分析
  • 批准号:
    2205710
  • 财政年份:
    2022
  • 资助金额:
    $ 9.8万
  • 项目类别:
    Standard Grant
Dynamic Free Boundary Problems
动态自由边界问题
  • 批准号:
    2153254
  • 财政年份:
    2022
  • 资助金额:
    $ 9.8万
  • 项目类别:
    Standard Grant
Probabilistic Approach to Singular Free Boundary Problems and Applications
奇异自由边界问题的概率方法及其应用
  • 批准号:
    2108680
  • 财政年份:
    2021
  • 资助金额:
    $ 9.8万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了