Free boundary and evolution problems arising in gas dynamics
气体动力学中出现的自由边界和演化问题
基本信息
- 批准号:1101260
- 负责人:
- 金额:$ 18.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-15 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project consists of two main topics: (1) a study of free boundary problems for elliptic and degenerate elliptic nonlinear equations and systems that arise in the models of compressible fluid dynamics and (2) a study of the system of semigeostrophic equations, which provides a model of large-scale atmosphere/ocean flows, using methods of Monge-Kantorovich mass transport and transport equations with nonsmooth vector fields. The first part of the project focuses on the shock reflection problem, one of the most fundamental multidimensional shock wave problems. The objective is to study existence, uniqueness, and geometric properties of solutions to the self-similar potential flow equation and the full compressible Euler system, which together model regular shock reflection. The self-similar potential flow equation is a nonlinear second-order equation of mixed elliptic-hyperbolic type for the velocity potential. The regular shock reflection problem can be formulated as a free boundary problem for the elliptic phase of the solution. In recent work, G.-Q. Chen and the principal investigator have established the global existence of a regular shock reflection solution for the potential flow in the case where the wedge angle is larger than the sonic angle. The goal of the present project is to extend these results in several directions, including proving existence of subsonic regular reflection (thus completing the proof of the von Neumann detachment conjecture in the framework of potential flow) and including the case of the compressible Euler system. In recent years, progress has been made in the study of the semigeostrophic system with constant Coriolis parameter in flat geometry. The second component of this project will include the investigation of a more physically relevant case of the system, one with variable Coriolis parameter on a manifold, and also a study of solutions that correspond to singular measures in the "dual" variables.Free boundary problems arise in many models in physics, fluid dynamics, engineering, and economics. In physical systems, "free boundaries" are regions of rapid variation of conditions between two very different states, such as shock wave in gas dynamics. Mathematically this rapid transition is simplified as occurring infinitely fast along a surface of discontinuity in the partial differential equation governing the physics. Location of this surface is not known at the outset, thus one must solve both for physical states and their boundaries. Significant progress has been achieved during the last several decades in the study of free boundary problems. However, in the case of nonlinear partial differential equations and especially for equations that have very different properties in the regions separated by the free boundary, many questions remain. The principal investigator plans to apply the techniques of free boundary problems to study some fundamental multidimensional shock waves in gas dynamics, specifically shock reflection patterns. This involves free boundary problems for nonlinear equations and systems of complex structure, for which new methods will be needed. Understanding properties of free boundaries, such as their regularity, stability and geometry, allows better analysis and numerical methods in models and applications. Another focus of the project is the semigeostrophic system, which models large-scale atmospheric/oceanic flows and is used in meteorology, in particular in models of front formation in the atmosphere. Methods include study of related Monge-Kantorovich-type problems. The Monge-Kantorovich mass transport theory has recently been applied successfully in several areas (e.g., kinetic theory, fluid flow, elastic crystals, granular materials, urban planning, microeconomic decision problems). Broader impact resulting from the project will be achieved since the project addresses the problems important in engineering and meteorology. Also, graduate students will be involved in the work on the project.
该项目包括两个主要专题:(1)研究可压缩流体动力学模型中出现的椭圆和退化椭圆非线性方程和方程组的自由边界问题;(2)研究半地转方程组,该方程组使用Monge-Kantorovich质量输运方法和具有非光滑矢量场的输运方程,提供大规模大气/海洋流动模型。该项目的第一部分集中在冲击反射问题,最基本的多维冲击波问题之一。目的是研究自相似势流方程和完全可压缩欧拉方程组解的存在性、唯一性和几何性质,它们共同模拟了规则激波反射。自相似势流方程是一个速度势为椭圆-双曲混合型的二阶非线性方程。正则激波反射问题可以表述为椭圆相解的自由边界问题。在最近的工作中,G。Q. Chen和主要研究者建立了楔角大于音速角情况下势流正则激波反射解的整体存在性。本项目的目标是在几个方向上扩展这些结果,包括证明亚音速规则反射的存在性(从而完成了在势流框架下冯·诺依曼分离猜想的证明),并包括可压缩欧拉系统的情况。近几年来,在平坦几何条件下,具有常数科里奥利参数的半地转系统的研究取得了一些进展。该项目的第二部分将包括一个更物理相关的情况下的系统,一个可变的科里奥利参数的流形上的调查,也是一个研究的解决方案,对应于奇异措施的“双”variables.Free边界问题出现在物理学,流体动力学,工程和经济学的许多模型。在物理系统中,“自由边界”是两个非常不同的状态之间条件快速变化的区域,例如气体动力学中的冲击波。 在数学上,这种快速转变被简化为沿着控制物理学的偏微分方程中的不连续表面沿着无限快速地发生。这个表面的位置在开始时是未知的,因此必须解决物理状态及其边界。近几十年来,自由边界问题的研究取得了重大进展。然而,在非线性偏微分方程的情况下,特别是对于在由自由边界分离的区域中具有非常不同的性质的方程,仍然存在许多问题。首席研究员计划应用自由边界问题的技术来研究气体动力学中的一些基本多维冲击波,特别是冲击反射模式。这涉及非线性方程和复杂结构系统的自由边界问题,需要新的方法。了解自由边界的性质,如其规则性,稳定性和几何形状,可以在模型和应用中更好地分析和数值方法。该项目的另一个重点是半地转系统,该系统模拟大规模大气/海洋流动,并用于气象学,特别是大气中锋面形成的模型。方法包括研究相关的Monge-Kantorovich型问题。Monge-Kantorovich质量输运理论最近已成功地应用于几个领域(例如,动力学理论、流体流动、弹性晶体、粒状材料、城市规划、微观经济决策问题)。该项目将产生更广泛的影响,因为该项目解决了工程和气象方面的重要问题。此外,研究生将参与该项目的工作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mikhail Feldman其他文献
Mikhail Feldman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mikhail Feldman', 18)}}的其他基金
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
- 批准号:
2219391 - 财政年份:2022
- 资助金额:
$ 18.09万 - 项目类别:
Standard Grant
Existence and Stability Analysis for Nonlinear Free Boundary and Evolution Problems
非线性自由边界和演化问题的存在性和稳定性分析
- 批准号:
2054689 - 财政年份:2021
- 资助金额:
$ 18.09万 - 项目类别:
Standard Grant
Nonlinear Free Boundary and Evolution Problems
非线性自由边界和演化问题
- 批准号:
1764278 - 财政年份:2018
- 资助金额:
$ 18.09万 - 项目类别:
Continuing Grant
Nonlinear free boundary and evolution problems
非线性自由边界和演化问题
- 批准号:
1401490 - 财政年份:2014
- 资助金额:
$ 18.09万 - 项目类别:
Standard Grant
Evolution Problems and Free Boundaries
进化问题和自由边界
- 批准号:
0800245 - 财政年份:2008
- 资助金额:
$ 18.09万 - 项目类别:
Continuing Grant
Free Boundary Problems, Mass Transfer and Nonlinear Dynamics
自由边界问题、传质和非线性动力学
- 批准号:
0500722 - 财政年份:2005
- 资助金额:
$ 18.09万 - 项目类别:
Standard Grant
Free Boundary Problems and Mass Transfer
自由边界问题和传质
- 批准号:
0200644 - 财政年份:2002
- 资助金额:
$ 18.09万 - 项目类别:
Standard Grant
Mass Transfer and Evolution Problems, Free Boundary Problems
传质和进化问题、自由边界问题
- 批准号:
0096090 - 财政年份:1999
- 资助金额:
$ 18.09万 - 项目类别:
Standard Grant
Mass Transfer and Evolution Problems, Free Boundary Problems
传质和进化问题、自由边界问题
- 批准号:
9970577 - 财政年份:1999
- 资助金额:
$ 18.09万 - 项目类别:
Standard Grant
Mathematical Sciences: Mass Transfer, Heat Flows with Constraints, Moving and Free Boundaries
数学科学:传质、约束热流、移动边界和自由边界
- 批准号:
9623276 - 财政年份:1996
- 资助金额:
$ 18.09万 - 项目类别:
Continuing Grant
相似国自然基金
水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
- 批准号:32070202
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
流体湍流运动的相关数学分析
- 批准号:10971174
- 批准年份:2009
- 资助金额:25.0 万元
- 项目类别:面上项目
不可压流体力学方程中的一些问题
- 批准号:10771177
- 批准年份:2007
- 资助金额:17.0 万元
- 项目类别:面上项目
关于任意截面导体壁中的环状形非圆截面等离子体稳定性的研究
- 批准号:10375050
- 批准年份:2003
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Existence and Stability Analysis for Nonlinear Free Boundary and Evolution Problems
非线性自由边界和演化问题的存在性和稳定性分析
- 批准号:
2054689 - 财政年份:2021
- 资助金额:
$ 18.09万 - 项目类别:
Standard Grant
Nonlinear Free Boundary and Evolution Problems
非线性自由边界和演化问题
- 批准号:
1764278 - 财政年份:2018
- 资助金额:
$ 18.09万 - 项目类别:
Continuing Grant
Nonlinear free boundary and evolution problems
非线性自由边界和演化问题
- 批准号:
1401490 - 财政年份:2014
- 资助金额:
$ 18.09万 - 项目类别:
Standard Grant
Regularity properties of stationary and evolution free boundary problems
平稳和自由演化边界问题的正则性
- 批准号:
1301535 - 财政年份:2013
- 资助金额:
$ 18.09万 - 项目类别:
Continuing Grant
Role of Free and Forced Boundary Conditions on Beachface Evolution
自由和强制边界条件对海滩演化的作用
- 批准号:
1262711 - 财政年份:2013
- 资助金额:
$ 18.09万 - 项目类别:
Standard Grant
Free boundary problems for capillary surfaces and other nonlinear evolution PDE
毛细管表面和其他非线性演化偏微分方程的自由边界问题
- 批准号:
1201426 - 财政年份:2012
- 资助金额:
$ 18.09万 - 项目类别:
Continuing Grant
Nonlinear evolution equations with constraint related to the free boundary problem on thermohydraulics model
热工水力模型自由边界问题带约束的非线性演化方程
- 批准号:
21740130 - 财政年份:2008
- 资助金额:
$ 18.09万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Mass Transfer and Evolution Problems, Free Boundary Problems
传质和进化问题、自由边界问题
- 批准号:
0096090 - 财政年份:1999
- 资助金额:
$ 18.09万 - 项目类别:
Standard Grant
Mass Transfer and Evolution Problems, Free Boundary Problems
传质和进化问题、自由边界问题
- 批准号:
9970577 - 财政年份:1999
- 资助金额:
$ 18.09万 - 项目类别:
Standard Grant
Mathematical Sciences: Evolution Free Boundary Problems and Regularity Theory
数学科学:无进化边界问题和正则性理论
- 批准号:
8502297 - 财政年份:1985
- 资助金额:
$ 18.09万 - 项目类别:
Standard Grant