Affine algebras, Lie superalgebras, Hecke algebras, and representations

仿射代数、李超代数、赫克代数和表示

基本信息

  • 批准号:
    0800280
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-07-01 至 2011-06-30
  • 项目状态:
    已结题

项目摘要

Wang's research proposal covers three very active areas of representation theory and aims to stretch them into new directions: (i) the Hecke algebras associated to double covers of the Weyl groups and their representations. He proposes to construct the quantum ``spin" Hecke algebras of finite, affine, and double affine types. Then he intends to develop the representation theory of these algebras at different levels of degeneration and connections to noncommutative geometry; (ii) modular representations of finite-dimensional (simple) Lie superalgebras over an algebraically closed field of prime characteristic. In particular, Wang proposes to establish a superalgebra analogue of the Kac-Weisfeiler conjecture and connections to finite W-superalgebras; and (iii) modular representation theory of affine Lie algebras over an algebraically closed field of prime characteristic. He proposes to study systematically Wakimoto modules, at the critical and non-critical levels, and affine W-algebras in the framework of modular vertex algebras.The mathematical language used to describe symmetries in nature and supersymmetry proposed by physicists often involves the concept of groups or algebras. Representation theory is a way of studying complicated groups and algebras by expressing them in matrix forms, sometimes in a deliberately simplified manner. One outcome of studying representations is to see how symmetries differ from one another and how seemingly different symmetries are related to each other. The study of groups and algebras has numerous applications to physics, chemistry, cryptography, and others. Wang's research will broaden the scope of the study of several central concepts in representation theory in the last three decades: Hecke algebras, Lie superalgebras, and affine Lie algebras.
Wang的研究建议涵盖了表示理论的三个非常活跃的领域,并试图将其扩展到新的方向:(I)与Weyl群的双重覆盖相关的Hecke代数及其表示。他建议构造有限、仿射和双仿射类型的量子“自旋”Hecke代数。然后,他打算发展这些代数在不同退化水平和与非交换几何的联系的表示理论;(Ii)有限维(单)李超代数在具有素数特征的代数闭域上的模表示。特别是,Wang建议建立Kac-Weisfeeller猜想的超代数模拟以及与有限W-超代数的联系;以及(Iii)具有素数特征的代数闭域上仿射李代数的模表示理论。他建议在模顶点代数的框架下,在临界和非临界水平上系统地研究Wakimoto模和仿射W-代数。物理学家提出的用于描述自然界的对称性和超对称性的数学语言通常涉及群或代数的概念。表示论是一种研究复杂群和代数的方法,它用矩阵的形式来表示它们,有时是故意简化的方式。研究表象的一个结果是看到对称性是如何彼此不同的,以及表面上不同的对称性是如何相互联系的。群和代数的研究在物理、化学、密码学和其他方面有许多应用。王的研究将拓宽过去三十年来表示论中几个核心概念的研究范围:Hecke代数、Lie超代数和仿射Lie代数。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Weiqiang Wang其他文献

Canonical Basis for Quantum $${\mathfrak{osp}(1|2)}$$
量子的规范基础 $${mathfrak{osp}(1|2)}$$
  • DOI:
    10.1007/s11005-012-0592-3
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sean Clark;Weiqiang Wang
  • 通讯作者:
    Weiqiang Wang
Hilbert schemes, wreath products, and the McKay correspondence
希尔伯特方案、花圈积和麦凯对应
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Weiqiang Wang
  • 通讯作者:
    Weiqiang Wang
Identifying ship-wakes in a shallow estuary using machine learning
使用机器学习识别浅河口的船舶尾迹
  • DOI:
    10.1016/j.oceaneng.2021.110456
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Yao Luo;Cheng Zhang;Junliang Liu;Huanlin Xing;Fenghua Zhou;Dongxiao Wang;Xiaomin Long;Shengan Wang;Weiqiang Wang;Fengyan Shi
  • 通讯作者:
    Fengyan Shi
Intensification and Dynamics of the Westward Equatorial Undercurrent During the Summers of 1998 and 2016 in the Indian Ocean
1998年和2016年夏季印度洋赤道西向潜流的加强和动态
  • DOI:
    10.1029/2022gl100168
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Ke Huang;Dongxiao Wang;Gengxin Chen;Motoki Nagura;Weiqing Han;Michael J. McPhaden;Ming Feng;Ju Chen;Ying Wu;Xiaolin Zhang;Yuanlong Li;Qiang Xie;Weiqiang Wang;Feng Zhou
  • 通讯作者:
    Feng Zhou
Braid group symmetries on quasi-split ıquantum groups via ıHall algebras
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Weiqiang Wang
  • 通讯作者:
    Weiqiang Wang

Weiqiang Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Weiqiang Wang', 18)}}的其他基金

Quantum Groups, W-algebras, and Brauer-Kauffmann Categories
量子群、W 代数和布劳尔-考夫曼范畴
  • 批准号:
    2401351
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Quantum Symmetric Pairs, Categorification, and Geometry
量子对称对、分类和几何
  • 批准号:
    2001351
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Canonical Bases, Categorification, and Modular Representations
规范基础、分类和模块化表示
  • 批准号:
    1702254
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Representation theory and quantum symmetric pairs
表示论和量子对称对
  • 批准号:
    1405131
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Representations of Lie superalgebras, Hecke algebras and affine algebras
李超代数、赫克代数和仿射代数的表示
  • 批准号:
    1101268
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference on Nonassociative Algebra in Action: Past, Present, and Future Perspectives
行动中的非结合代数会议:过去、现在和未来的观点
  • 批准号:
    1106203
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Summer school and conference on geometric representation theory and extended affine Lie algebras
几何表示理论和扩展仿射李代数暑期学校和会议
  • 批准号:
    0903278
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Duality between representations of Lie superalgebras and Lie algebras via Kazhdan-Lusztig theory
通过 Kazhdan-Lusztig 理论研究李超代数和李代数表示之间的对偶性
  • 批准号:
    0500374
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference on Infinite-Dimensional Aspects of Representation Theory and Applications; Charlottesville, VA; May 2004
表示理论与应用的无限维方面会议;
  • 批准号:
    0401095
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Representations of Infinite Dimensional Lie Algebras and the McKay Correspondence
无限维李代数的表示和麦凯对应
  • 批准号:
    0196434
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

数学物理中精确可解模型的代数方法
  • 批准号:
    11771015
  • 批准年份:
    2017
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目

相似海外基金

The structure, classification and representation theory of locally extended affine Lie algebras
局部扩展仿射李代数的结构、分类和表示论
  • 批准号:
    23K03063
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Representation theory of affine Lie algebras and enumerative geometry of sheaves on toric surfaces and threefolds
仿射李代数表示论与复曲面和三重滑轮的枚举几何
  • 批准号:
    567867-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Postdoctoral Fellowships
Multi-affine Lie algebras and their representations
多重仿射李代数及其表示
  • 批准号:
    RGPIN-2015-05967
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Multi-affine Lie algebras and their representations
多重仿射李代数及其表示
  • 批准号:
    RGPIN-2015-05967
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Multi-affine Lie algebras and their representations
多重仿射李代数及其表示
  • 批准号:
    RGPIN-2015-05967
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Multi-affine Lie algebras and their representations
多重仿射李代数及其表示
  • 批准号:
    RGPIN-2015-05967
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Cherednik Algebras and Affine Lie Algebras
Cherednik 代数和仿射李代数
  • 批准号:
    EP/N023919/1
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Tilings from twisted affine Lie algebras
扭曲仿射李代数的平铺
  • 批准号:
    497351-2016
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Relation between representations at the critical level and those of level zero for affine Lie algebras and semi-infinite flag manifolds
仿射李代数和半无限标志流形的临界层表示与零层表示之间的关系
  • 批准号:
    16H03920
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Multi-affine Lie algebras and their representations
多重仿射李代数及其表示
  • 批准号:
    RGPIN-2015-05967
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了