Duality between representations of Lie superalgebras and Lie algebras via Kazhdan-Lusztig theory

通过 Kazhdan-Lusztig 理论研究李超代数和李代数表示之间的对偶性

基本信息

  • 批准号:
    0500374
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-07-01 至 2008-06-30
  • 项目状态:
    已结题

项目摘要

The super representation theory is traditionally regarded as fairly different from the usual one for Lie algebras largely because the Weyl group for a simple Lie superalgebra does not suffice to control the structures of the irreducible representations. The PI intends to formulate and establish a new direct link, termed as super duality, between the representation theories of Lie superalgebras and of Lie algebras. The super duality asserts certain equivalences of module categories in a suitable infinite limit and the identification of the Kazhdan-Lusztig polynomials for Lie superalgebras and Liealgebras. A main algebraic tool is a Fock space formulation of the Kazhdan-Lusztig theory. The super duality is expected to provide a new approach toward the Kazhdan-Lusztig type conjectures on irreducible characters for module categories over simple Lie superalgebras of various types and for module categories over quantum supergroups at roots of unity.There are different manifestations of symmetries in nature, which one can find in, for example, a circle, a sphere, or one of the five regular polyhedra, and others. The mathematical language used to describe symmetries often involves the concept of groups or their infinitesimal counterparts such as Lie algebras. Representation Theory is a way of studying the groups and Lie algebras by expressing them in terms of matrices. On the other hand, different symmetries can be related to each other. In search for a unified theory of everything, physicists have proposedString Theory as a candidate theory. Supersymmetry adds another invisible dimension to such considerations and the study of Lie superalgebras is crucial to understanding the supersymmetry. Our project on Super Duality can be regarded as providing a precise and new way of relating supersymmetry to symmetry in the usual sense. This helps to provide a convincing evidence supporting the idea of supersymmetry and may have applications to String Theory.
传统上,超表示理论被认为与通常的李代数的超表示理论有很大的不同,很大程度上是因为单李超代数的Weyl群不足以控制不可约表示的结构。PI试图在李超代数的表示理论和李代数的表示理论之间建立一种新的直接联系,称为超对偶。超对偶性证明了李超代数和李代数的Kazhdan-Lusztig多项式在适当的无穷极限上的某些等价和Kazhdan-Lusztig多项式的识别。一个主要的代数工具是Kazhdan-Lusztig理论的Fock空间公式。超对偶性有望为各种类型的单李超代数上的模范畴和单位根处的量子超群上的模范畴上的不可约特征标的Kazhdan-Lusztig型猜想提供一种新的途径。自然界中对称性的不同表现形式可以在圆、球面或五个正多面体之一等中找到。用来描述对称性的数学语言通常涉及群或它们的无穷小对应的概念,如李代数。表示论是通过用矩阵来表示群和李代数的一种研究方法。另一方面,不同的对称性可以相互关联。在寻求万物统一理论的过程中,物理学家提出了弦理论作为候选理论。超对称为这种考虑增加了另一个看不见的维度,而对李超代数的研究对于理解超对称是至关重要的。我们的超对偶项目可以被视为提供了一种将超对称性与通常意义上的对称性联系起来的精确和新的方法。这有助于提供令人信服的证据支持超对称性的想法,并可能应用于弦理论。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Weiqiang Wang其他文献

Canonical Basis for Quantum $${\mathfrak{osp}(1|2)}$$
量子的规范基础 $${mathfrak{osp}(1|2)}$$
  • DOI:
    10.1007/s11005-012-0592-3
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sean Clark;Weiqiang Wang
  • 通讯作者:
    Weiqiang Wang
Hilbert schemes, wreath products, and the McKay correspondence
希尔伯特方案、花圈积和麦凯对应
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Weiqiang Wang
  • 通讯作者:
    Weiqiang Wang
Identifying ship-wakes in a shallow estuary using machine learning
使用机器学习识别浅河口的船舶尾迹
  • DOI:
    10.1016/j.oceaneng.2021.110456
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Yao Luo;Cheng Zhang;Junliang Liu;Huanlin Xing;Fenghua Zhou;Dongxiao Wang;Xiaomin Long;Shengan Wang;Weiqiang Wang;Fengyan Shi
  • 通讯作者:
    Fengyan Shi
Intensification and Dynamics of the Westward Equatorial Undercurrent During the Summers of 1998 and 2016 in the Indian Ocean
1998年和2016年夏季印度洋赤道西向潜流的加强和动态
  • DOI:
    10.1029/2022gl100168
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Ke Huang;Dongxiao Wang;Gengxin Chen;Motoki Nagura;Weiqing Han;Michael J. McPhaden;Ming Feng;Ju Chen;Ying Wu;Xiaolin Zhang;Yuanlong Li;Qiang Xie;Weiqiang Wang;Feng Zhou
  • 通讯作者:
    Feng Zhou
Braid group symmetries on quasi-split ıquantum groups via ıHall algebras
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Weiqiang Wang
  • 通讯作者:
    Weiqiang Wang

Weiqiang Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Weiqiang Wang', 18)}}的其他基金

Quantum Groups, W-algebras, and Brauer-Kauffmann Categories
量子群、W 代数和布劳尔-考夫曼范畴
  • 批准号:
    2401351
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Quantum Symmetric Pairs, Categorification, and Geometry
量子对称对、分类和几何
  • 批准号:
    2001351
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Canonical Bases, Categorification, and Modular Representations
规范基础、分类和模块化表示
  • 批准号:
    1702254
  • 财政年份:
    2017
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Representation theory and quantum symmetric pairs
表示论和量子对称对
  • 批准号:
    1405131
  • 财政年份:
    2014
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Representations of Lie superalgebras, Hecke algebras and affine algebras
李超代数、赫克代数和仿射代数的表示
  • 批准号:
    1101268
  • 财政年份:
    2011
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Conference on Nonassociative Algebra in Action: Past, Present, and Future Perspectives
行动中的非结合代数会议:过去、现在和未来的观点
  • 批准号:
    1106203
  • 财政年份:
    2011
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Summer school and conference on geometric representation theory and extended affine Lie algebras
几何表示理论和扩展仿射李代数暑期学校和会议
  • 批准号:
    0903278
  • 财政年份:
    2009
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Affine algebras, Lie superalgebras, Hecke algebras, and representations
仿射代数、李超代数、赫克代数和表示
  • 批准号:
    0800280
  • 财政年份:
    2008
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Conference on Infinite-Dimensional Aspects of Representation Theory and Applications; Charlottesville, VA; May 2004
表示理论与应用的无限维方面会议;
  • 批准号:
    0401095
  • 财政年份:
    2004
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Representations of Infinite Dimensional Lie Algebras and the McKay Correspondence
无限维李代数的表示和麦凯对应
  • 批准号:
    0196434
  • 财政年份:
    2001
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant

相似海外基金

Caught between the binary : Exploring dominant representations of detransitioned people across digital platforms and publications
夹在二元之间:探索数字平台和出版物中变性者的主导表现
  • 批准号:
    2873127
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Studentship
Congruences between modular forms, Galois representations, and arithmetic consequences
模形式、伽罗瓦表示和算术结果之间的同余
  • 批准号:
    2301738
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Bridging the gap between the human mathematical language and unambiguous computer representations
弥合人类数学语言和明确的计算机表示之间的差距
  • 批准号:
    2770826
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Studentship
The interplay between kinematic and force representations in motor and somatosensory cortices during reaching, grasping, and object transport
伸手、抓握和物体运输过程中运动和体感皮层运动学和力表征之间的相互作用
  • 批准号:
    10357463
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
The interplay between kinematic and force representations in motor and somatosensory cortices during reaching, grasping, and object transport
伸手、抓握和物体运输过程中运动和体感皮层运动学和力表征之间的相互作用
  • 批准号:
    10546486
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
Can Distributed Representations of Disease Learned from Academic Journal Abstracts Represent the Distance Between Diseases?
从学术期刊摘要中了解到的疾病的分布式表示可以代表疾病之间的距离吗?
  • 批准号:
    21K17848
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Functional shifts and neural representations between striatal subregions during sensory-motor learning
感觉运动学习期间纹状体亚区之间的功能转变和神经表征
  • 批准号:
    19K20074
  • 财政年份:
    2019
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Relation between poetic language and modernization examined through representations of faces and portraits - French Symbolism and Modern Japanese poetry
通过面孔和肖像的表现来审视诗歌语言与现代化之间的关系——法国象征主义和现代日本诗歌
  • 批准号:
    19K00500
  • 财政年份:
    2019
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Examining Mechanistic Links Between Maternal Attachment Representations and Young Children's Telomere Length
检查母亲依恋表征与幼儿端粒长度之间的机制联系
  • 批准号:
    9807363
  • 财政年份:
    2019
  • 资助金额:
    $ 10万
  • 项目类别:
Comparison of neural representations between synesthetic and physical colors in grapheme-color synesthesia
字素-颜色联觉中联觉和物理颜色神经表征的比较
  • 批准号:
    19K23362
  • 财政年份:
    2019
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了