Canonical Bases, Categorification, and Modular Representations
规范基础、分类和模块化表示
基本信息
- 批准号:1702254
- 负责人:
- 金额:$ 31.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-01 至 2020-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The symmetries of a snowflake or a baseball are described by the notion of a group. Groups also describe more abstract symmetries, including supersymmetry in theoretical particle physics. Many important symmetries are described by continuous groups known as Lie groups, after mathematician Sophus Lie; these groups are generated by associated Lie algebras. Quantum groups, which are deformations of such symmetries, also serve as a shadow of higher structures. This research project aims to further develop a new approach, via so-called i-quantum groups, to representations of Lie algebras and Lie superalgebras. This new approach aims to uncover the underlying geometric and higher categorical structures of i-quantum groups. Results are expected also to have applications to knot theory. Because of recently discovered connections to geometry of flag varieties, canonical bases, and categorification, i-quantum groups, which are co-ideal subalgebras of Drinfeld-Jimbo quantum groups, have been shown to play an increasingly important role in the theory of quantum groups and representations of Lie algebras and Lie superalgebras. In this project the investigator plans to develop the theory of canonical bases and categorical actions of i-quantum groups and their modules in the Kac-Moody setting. In particular, a categorification of affine -quantum groups will be formulated and applied to study the modular representation theory of quantum (super)groups of classical type at roots of unity and classical algebraic groups in prime characteristic. Character formulae in Bernstein-Gelfand-Gelfand category for exceptional Lie superalgebras will also be formulated.
雪花或棒球的对称性用群的概念来描述。群还描述了更抽象的对称性,包括理论粒子物理学中的超对称性。许多重要的对称被称为李群的连续群来描述,这是数学家Sophus Lie的名字;这些群由相关的李代数生成。量子群是这种对称性的变形,也是更高结构的影子。这个研究项目旨在进一步发展一种新的方法,通过所谓的I-量子群来表示李代数和李超代数。这一新方法旨在揭示i-量子群的基本几何结构和更高范畴结构。这一结果也有望应用于纽结理论。由于最近发现了与标志簇、标准基和范畴几何的联系,I-量子群作为Drinfeld-Jimbo量子群的上理想子代数,在量子群理论和李代数和李超代数的表示中发挥着越来越重要的作用。在这个项目中,研究者计划在Kac-Moody环境下发展I-量子群及其模的典范基和范畴作用的理论。特别地,建立了仿射量子群的范畴,并将其应用于研究单位根处的经典类型量子(超)群和素数特征的经典代数群的模表示理论。还将建立特殊李超代数的Bernstein-Gelfand-Gelfand范畴的特征标公式。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Odd Singular Vector Formula for General Linear Lie Superalgebras
一般线性李超代数的奇奇异向量公式
- DOI:10.21915/bimas.2019401
- 发表时间:2019
- 期刊:
- 影响因子:0.2
- 作者:Liu, Jie;Wang, Li Luo
- 通讯作者:Wang, Li Luo
Quantum supergroups VI: roots of 1
量子超群 VI:1 的根
- DOI:10.1007/s11005-019-01209-4
- 发表时间:2019
- 期刊:
- 影响因子:1.2
- 作者:Chung, Christopher;Sale, Thomas;Wang, Weiqiang
- 通讯作者:Wang, Weiqiang
Spin nilHecke algebras of classical type
经典类型的自旋 nilHecke 代数
- DOI:10.1016/j.jalgebra.2017.10.024
- 发表时间:2018
- 期刊:
- 影响因子:0.9
- 作者:Johnson, Ian;Wang, Weiqiang
- 通讯作者:Wang, Weiqiang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Weiqiang Wang其他文献
Canonical Basis for Quantum $${\mathfrak{osp}(1|2)}$$
量子的规范基础 $${mathfrak{osp}(1|2)}$$
- DOI:
10.1007/s11005-012-0592-3 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Sean Clark;Weiqiang Wang - 通讯作者:
Weiqiang Wang
Hilbert schemes, wreath products, and the McKay correspondence
希尔伯特方案、花圈积和麦凯对应
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Weiqiang Wang - 通讯作者:
Weiqiang Wang
Identifying ship-wakes in a shallow estuary using machine learning
使用机器学习识别浅河口的船舶尾迹
- DOI:
10.1016/j.oceaneng.2021.110456 - 发表时间:
2022 - 期刊:
- 影响因子:5
- 作者:
Yao Luo;Cheng Zhang;Junliang Liu;Huanlin Xing;Fenghua Zhou;Dongxiao Wang;Xiaomin Long;Shengan Wang;Weiqiang Wang;Fengyan Shi - 通讯作者:
Fengyan Shi
Intensification and Dynamics of the Westward Equatorial Undercurrent During the Summers of 1998 and 2016 in the Indian Ocean
1998年和2016年夏季印度洋赤道西向潜流的加强和动态
- DOI:
10.1029/2022gl100168 - 发表时间:
2022-10 - 期刊:
- 影响因子:5.2
- 作者:
Ke Huang;Dongxiao Wang;Gengxin Chen;Motoki Nagura;Weiqing Han;Michael J. McPhaden;Ming Feng;Ju Chen;Ying Wu;Xiaolin Zhang;Yuanlong Li;Qiang Xie;Weiqiang Wang;Feng Zhou - 通讯作者:
Feng Zhou
Braid group symmetries on quasi-split ıquantum groups via ıHall algebras
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Weiqiang Wang - 通讯作者:
Weiqiang Wang
Weiqiang Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Weiqiang Wang', 18)}}的其他基金
Quantum Groups, W-algebras, and Brauer-Kauffmann Categories
量子群、W 代数和布劳尔-考夫曼范畴
- 批准号:
2401351 - 财政年份:2024
- 资助金额:
$ 31.81万 - 项目类别:
Standard Grant
Quantum Symmetric Pairs, Categorification, and Geometry
量子对称对、分类和几何
- 批准号:
2001351 - 财政年份:2020
- 资助金额:
$ 31.81万 - 项目类别:
Continuing Grant
Representation theory and quantum symmetric pairs
表示论和量子对称对
- 批准号:
1405131 - 财政年份:2014
- 资助金额:
$ 31.81万 - 项目类别:
Standard Grant
Representations of Lie superalgebras, Hecke algebras and affine algebras
李超代数、赫克代数和仿射代数的表示
- 批准号:
1101268 - 财政年份:2011
- 资助金额:
$ 31.81万 - 项目类别:
Standard Grant
Conference on Nonassociative Algebra in Action: Past, Present, and Future Perspectives
行动中的非结合代数会议:过去、现在和未来的观点
- 批准号:
1106203 - 财政年份:2011
- 资助金额:
$ 31.81万 - 项目类别:
Standard Grant
Summer school and conference on geometric representation theory and extended affine Lie algebras
几何表示理论和扩展仿射李代数暑期学校和会议
- 批准号:
0903278 - 财政年份:2009
- 资助金额:
$ 31.81万 - 项目类别:
Standard Grant
Affine algebras, Lie superalgebras, Hecke algebras, and representations
仿射代数、李超代数、赫克代数和表示
- 批准号:
0800280 - 财政年份:2008
- 资助金额:
$ 31.81万 - 项目类别:
Continuing Grant
Duality between representations of Lie superalgebras and Lie algebras via Kazhdan-Lusztig theory
通过 Kazhdan-Lusztig 理论研究李超代数和李代数表示之间的对偶性
- 批准号:
0500374 - 财政年份:2005
- 资助金额:
$ 31.81万 - 项目类别:
Standard Grant
Conference on Infinite-Dimensional Aspects of Representation Theory and Applications; Charlottesville, VA; May 2004
表示理论与应用的无限维方面会议;
- 批准号:
0401095 - 财政年份:2004
- 资助金额:
$ 31.81万 - 项目类别:
Standard Grant
Representations of Infinite Dimensional Lie Algebras and the McKay Correspondence
无限维李代数的表示和麦凯对应
- 批准号:
0196434 - 财政年份:2001
- 资助金额:
$ 31.81万 - 项目类别:
Standard Grant
相似海外基金
Enhancing Factuality in Medical QA: Integrating Structured Knowledge Bases with Large Language Models
增强医学质量保证的真实性:将结构化知识库与大型语言模型相集成
- 批准号:
24K20832 - 财政年份:2024
- 资助金额:
$ 31.81万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The neural and glial bases of diet-induced deficits in control of reward-seeking actions
饮食引起的奖励寻求行为控制缺陷的神经和神经胶质基础
- 批准号:
490692 - 财政年份:2023
- 资助金额:
$ 31.81万 - 项目类别:
Operating Grants
The existence and abundance of small bases of permutation groups
排列群小基的存在性和丰度
- 批准号:
DE230100579 - 财政年份:2023
- 资助金额:
$ 31.81万 - 项目类别:
Discovery Early Career Researcher Award
Collaborative Research: EDGE CMT: Genomic and molecular bases of pollination syndrome evolution in monkeyflowers
合作研究:EDGE CMT:猴花授粉综合征进化的基因组和分子基础
- 批准号:
2319721 - 财政年份:2023
- 资助金额:
$ 31.81万 - 项目类别:
Continuing Grant
Identification of Genetic and Molecular Bases of Derived Phenotypes in Primate Brain Development
灵长类动物大脑发育中衍生表型的遗传和分子基础的鉴定
- 批准号:
10841947 - 财政年份:2023
- 资助金额:
$ 31.81万 - 项目类别:
CAREER: Holistic Framework for Constructing Dynamic Malicious Knowledge Bases in Social Networks
职业:在社交网络中构建动态恶意知识库的整体框架
- 批准号:
2348452 - 财政年份:2023
- 资助金额:
$ 31.81万 - 项目类别:
Continuing Grant
Conditions for U.S. Agreement on the Closure of Contested Overseas Bases: Relations of Threat, Alliance and Base Alternatives
美国关于关闭有争议的海外基地协议的条件:威胁、联盟和基地替代方案的关系
- 批准号:
23K18762 - 财政年份:2023
- 资助金额:
$ 31.81万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Identification of the molecular genetic bases for evolution to trioecious green alga through whole genome analysis
通过全基因组分析鉴定绿藻三异株进化的分子遗传基础
- 批准号:
23K19345 - 财政年份:2023
- 资助金额:
$ 31.81万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Define the molecular bases for cryptococcal adaptation to host conditions by the RAM pathway
通过 RAM 途径定义隐球菌适应宿主条件的分子基础
- 批准号:
10627371 - 财政年份:2023
- 资助金额:
$ 31.81万 - 项目类别: