Topics in Nonlinear Subelliptic Partial Differential Equations

非线性亚椭圆偏微分方程主题

基本信息

  • 批准号:
    0800522
  • 负责人:
  • 金额:
    $ 13.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-06-15 至 2012-05-31
  • 项目状态:
    已结题

项目摘要

The focus of this research project is a family of nonlinear partial differential equations (PDE) that are the sub-Riemannian analogues of the mean curvature flow PDE, the minimal surface PDE, and the conformal n-Laplacian. Together with his students and his collaborators, the principal investigator will build on his previous work with Mario Bonk and Giovanna Citti in order to investigate questions of existence, regularity, and uniqueness of solutions to the equations and to explore the qualitative features of these solutions (e.g., convexity, self-similarity, asymptotic behavior). In collaboration with Bonk, Scott Pauls, and Jeremy Tyson, the principal investigator will study the differential geometry of submanifolds in a sub-Riemannian space, thereby providing the geometric background for the PDE theory. The principal investigator will also continue his work with Michael Cowling and Loredana Lanzani and study a geometric function theory/nonlinear PDE approach to the boundary regularity of biholomorphic mappings between strictly pseudoconvex sets. The study of sub-Riemannian geometry has been driven since its origins by "real world" problems and applications. Roughly speaking, sub-Riemannian spaces are those whose structure can be viewed as a "constrained geometry": motion is possible only along a given set of directions, which changes from point to point yet nevertheless guarantees global accessibility. The scope of sub-Riemannian geometry is startlingly broad, including applications to areas as diverse and varied as the following: complex analysis, motion of robot arms and control theory, hyperbolic geometry, quantum computing, satellites, quantum mechanics, the structural function of the mammalian visual cortex. The study of partial differential equations in this setting allows one to create mathematical models of real-life situations. One then uses the models to achieve a better understanding of the systems under study and, as a result, to make accurate forecasts of their future behavior.
本研究的重点是一族非线性偏微分方程族,它们是平均曲率流偏微分方程组、极小曲面偏微分方程组和共形n-拉普拉斯偏微分方程组的次黎曼类似。与他的学生和他的合作者一起,首席研究员将在他之前与Mario Bonk和Giovanna Citti的工作的基础上,研究方程解的存在、正则性和唯一性问题,并探索这些解的定性特征(例如,凸性、自相似、渐近行为)。与Bonk,Scott Pauls和Jeremy Tyson合作,主要研究者将研究子流形在次黎曼空间中的微分几何,从而为PDE理论提供几何背景。主要研究人员还将继续他与Michael Cowling和Loredana Lanzani的工作,并研究严格伪凸集之间双全纯映射的边界正则性的几何函数论/非线性PDE方法。次黎曼几何的研究自诞生以来一直受到“真实世界”问题和应用的推动。粗略地说,次黎曼空间是那些其结构可以被视为“受限几何”的空间:运动只能沿着一组给定的方向进行,这组方向会逐点变化,但仍然保证了全局的可访问性。亚黎曼几何的范围令人惊讶地广泛,包括应用于各种不同的领域:复杂分析、机器人手臂的运动和控制理论、双曲几何、量子计算、卫星、量子力学、哺乳动物视觉皮质的结构功能。在这一背景下研究偏微分方程式使人们能够创建真实情况的数学模型。然后,人们使用这些模型来更好地理解所研究的系统,并因此对它们未来的行为做出准确的预测。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Luca Capogna其他文献

Regularity Theory of Quasilinear Elliptic and Parabolic Equations in the Heisenberg Group
  • DOI:
    10.1007/s10013-023-00644-0
  • 发表时间:
    2023-08-23
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Luca Capogna;Giovanna Citti;Xiao Zhong
  • 通讯作者:
    Xiao Zhong
The mixed problem in L p for some two-dimensional Lipschitz domains
  • DOI:
    10.1007/s00208-008-0223-6
  • 发表时间:
    2008-04-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Loredana Lanzani;Luca Capogna;Russell M. Brown
  • 通讯作者:
    Russell M. Brown
The asymptotic p-Poisson equation as $$p \rightarrow \infty $$ in Carnot-Carathéodory spaces
卡诺-卡拉西奥多里空间中的渐近 p-泊松方程 $$p ightarrow infty $$
  • DOI:
    10.1007/s00208-024-02805-z
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Luca Capogna;Gianmarco Giovannardi;A. Pinamonti;Simone Verzellesi
  • 通讯作者:
    Simone Verzellesi

Luca Capogna的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Luca Capogna', 18)}}的其他基金

Applications of Quasiconformal Geometry and Partial Differential Equations
拟共形几何与偏微分方程的应用
  • 批准号:
    2141297
  • 财政年份:
    2021
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
Applications of Quasiconformal Geometry and Partial Differential Equations
拟共形几何与偏微分方程的应用
  • 批准号:
    1955992
  • 财政年份:
    2020
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
Topics in quasiconformal mappings and subelliptic PDE
拟共形映射和次椭圆 PDE 主题
  • 批准号:
    1503683
  • 财政年份:
    2015
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Continuing Grant
Topics in Quasiconformal mappings and in PDE
拟共形映射和偏微分方程中的主题
  • 批准号:
    1449143
  • 财政年份:
    2014
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
Topics in Quasiconformal mappings and in PDE
拟共形映射和偏微分方程中的主题
  • 批准号:
    1101478
  • 财政年份:
    2011
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
Two Spring Lecture Series in Analysis and PDE
分析和偏微分方程的两个春季讲座系列
  • 批准号:
    0751330
  • 财政年份:
    2008
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
CAREER: Integration of Research and Education in the Study of Analysis and Partial Differential Equations in Carnot-Caratheodory Spaces
职业:卡诺-卡拉特奥多里空间分析和偏微分方程研究中的研究和教育一体化
  • 批准号:
    0134318
  • 财政年份:
    2002
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Continuing Grant
Conference on Solutions of PDE's in periodic media.
定期媒体中偏微分方程解决方案会议。
  • 批准号:
    0100599
  • 财政年份:
    2001
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
Conference in Harmonic Analysis
谐波分析会议
  • 批准号:
    0070592
  • 财政年份:
    2000
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
Boundary and Interior Regularity for Minimizers of the p-Energy and Related Functionals in Carnot-Caratheodory Spaces
卡诺-卡拉西奥多里空间中 p 能量极小值及相关泛函的边界和内部正则性
  • 批准号:
    0096081
  • 财政年份:
    1999
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant

相似海外基金

New Ways Forward for Nonlinear Structural Dynamics
非线性结构动力学的新方法
  • 批准号:
    EP/X040852/1
  • 财政年份:
    2024
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Fellowship
CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
  • 批准号:
    2338663
  • 财政年份:
    2024
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Continuing Grant
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
  • 批准号:
    2338749
  • 财政年份:
    2024
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
CAREER: Interacting Particle Systems and their Mean-Field PDEs: when nonlinear models meet data
职业:相互作用的粒子系统及其平均场偏微分方程:当非线性模型遇到数据时
  • 批准号:
    2340762
  • 财政年份:
    2024
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Continuing Grant
New Challenges in the Study of Propagation of Randomness for Nonlinear Evolution Equations
非线性演化方程随机传播研究的新挑战
  • 批准号:
    2400036
  • 财政年份:
    2024
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
  • 批准号:
    2346780
  • 财政年份:
    2024
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
Nonlinear Quantum Control Engineering
非线性量子控制工程
  • 批准号:
    DP240101494
  • 财政年份:
    2024
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Discovery Projects
Concentration Phenomena in Nonlinear PDEs and Elasto-plasticity Theory
非线性偏微分方程中的集中现象和弹塑性理论
  • 批准号:
    EP/Z000297/1
  • 财政年份:
    2024
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Research Grant
Quantum Algorithms for Nonlinear Differential Equations - QuANDiE
非线性微分方程的量子算法 - QuANDiE
  • 批准号:
    EP/Y004663/2
  • 财政年份:
    2024
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Research Grant
CAREER: Bridging Infrared and Visible Photonics with Chip-ready Nonlinear and Quantum Metadevices
职业:通过芯片就绪的非线性和量子元设备桥接红外和可见光光子学
  • 批准号:
    2339271
  • 财政年份:
    2024
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了