Topics in Quasiconformal mappings and in PDE

拟共形映射和偏微分方程中的主题

基本信息

  • 批准号:
    1449143
  • 负责人:
  • 金额:
    $ 10.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-05-12 至 2016-06-30
  • 项目状态:
    已结题

项目摘要

The problems studied in this research project have as common theme the qualitative study of critical points of functionals arising from geometry and of their gradient flows. More specifically the principal investigator will continue to study weak solutions to a family of nonlinear partial differential equations (PDE) that are the sub-Riemannian analogues of the mean curvature flow PDE, the minimal surface PDE, and the conformal n-Laplacian. The principal investigator will also study a geometric function theory/nonlinear PDE approach to the boundary regularity of biholomorphic mappings between strongly pseudoconvex sets and pursue the study of extremal quasiconformal mappings in space. Both in the natural sciences and in engineering it is important to study equilibrium states of complex systems. Mathematics allows to model such states as critical points of energy functionals and to study their properties by analyzing certain differential equations associated to these functionals. The properties of the solutions to these equations depend on a 'background geometry' that models such real-life features as the non-homogeneity of materials, or the presence of constraints (such as in the motion of robot arms, etc. etc. ...). One of the most ubiquitous instances of such 'background geometry' is sub-Riemannian geometry, modeling spaces where motion is possible only along a given set of directions, as in applications to complex analysis, motion of robot arms and control theory, quantum computing, satellites, quantum mechanics and in the structural functions of the mammalian visual cortex. The PI will pursue this work together with his students as well as his collaborators. The study of sub-Riemannian geometry has been driven since its origins by "real world" problems and the PI lectures to a wide variety of audiences from the post-graduate level to the high school level.
在这个研究项目中研究的问题有一个共同的主题,即从几何和梯度流中产生的泛函的临界点的定性研究。更具体地说,首席研究员将继续研究弱解的非线性偏微分方程(PDE)的家庭是次黎曼模拟的平均曲率流PDE,最小曲面PDE,和共形的n-Laplacian。 首席研究员还将研究几何函数理论/非线性PDE方法,以解决强伪凸集之间的双全纯映射的边界正则性,并继续研究空间中的极值拟共形映射。 在自然科学和工程中,研究复杂系统的平衡态是很重要的。数学允许模拟这些状态作为能量泛函的临界点,并通过分析与这些泛函相关的某些微分方程来研究它们的性质。这些方程的解的性质取决于“背景几何”,该“背景几何”对诸如材料的非均匀性或约束的存在(诸如在机器人臂的运动中等)等现实特征进行建模。这种“背景几何学”最普遍的例子之一是亚黎曼几何学,它对运动只能沿着沿着给定方向的空间进行建模,如在复杂分析、机器人手臂运动和控制理论、量子计算、卫星、量子力学以及哺乳动物视觉皮层的结构功能中的应用。PI将与他的学生以及他的合作者一起开展这项工作。 亚黎曼几何的研究从其起源起就受到“真实的世界”问题和PI讲座的推动,从研究生水平到高中水平的各种观众。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Luca Capogna其他文献

Regularity Theory of Quasilinear Elliptic and Parabolic Equations in the Heisenberg Group
  • DOI:
    10.1007/s10013-023-00644-0
  • 发表时间:
    2023-08-23
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Luca Capogna;Giovanna Citti;Xiao Zhong
  • 通讯作者:
    Xiao Zhong
The mixed problem in L p for some two-dimensional Lipschitz domains
  • DOI:
    10.1007/s00208-008-0223-6
  • 发表时间:
    2008-04-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Loredana Lanzani;Luca Capogna;Russell M. Brown
  • 通讯作者:
    Russell M. Brown
The asymptotic p-Poisson equation as $$p \rightarrow \infty $$ in Carnot-Carathéodory spaces
卡诺-卡拉西奥多里空间中的渐近 p-泊松方程 $$p ightarrow infty $$
  • DOI:
    10.1007/s00208-024-02805-z
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Luca Capogna;Gianmarco Giovannardi;A. Pinamonti;Simone Verzellesi
  • 通讯作者:
    Simone Verzellesi

Luca Capogna的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Luca Capogna', 18)}}的其他基金

Applications of Quasiconformal Geometry and Partial Differential Equations
拟共形几何与偏微分方程的应用
  • 批准号:
    2141297
  • 财政年份:
    2021
  • 资助金额:
    $ 10.99万
  • 项目类别:
    Standard Grant
Applications of Quasiconformal Geometry and Partial Differential Equations
拟共形几何与偏微分方程的应用
  • 批准号:
    1955992
  • 财政年份:
    2020
  • 资助金额:
    $ 10.99万
  • 项目类别:
    Standard Grant
Topics in quasiconformal mappings and subelliptic PDE
拟共形映射和次椭圆 PDE 主题
  • 批准号:
    1503683
  • 财政年份:
    2015
  • 资助金额:
    $ 10.99万
  • 项目类别:
    Continuing Grant
Topics in Quasiconformal mappings and in PDE
拟共形映射和偏微分方程中的主题
  • 批准号:
    1101478
  • 财政年份:
    2011
  • 资助金额:
    $ 10.99万
  • 项目类别:
    Standard Grant
Two Spring Lecture Series in Analysis and PDE
分析和偏微分方程的两个春季讲座系列
  • 批准号:
    0751330
  • 财政年份:
    2008
  • 资助金额:
    $ 10.99万
  • 项目类别:
    Standard Grant
Topics in Nonlinear Subelliptic Partial Differential Equations
非线性亚椭圆偏微分方程主题
  • 批准号:
    0800522
  • 财政年份:
    2008
  • 资助金额:
    $ 10.99万
  • 项目类别:
    Standard Grant
CAREER: Integration of Research and Education in the Study of Analysis and Partial Differential Equations in Carnot-Caratheodory Spaces
职业:卡诺-卡拉特奥多里空间分析和偏微分方程研究中的研究和教育一体化
  • 批准号:
    0134318
  • 财政年份:
    2002
  • 资助金额:
    $ 10.99万
  • 项目类别:
    Continuing Grant
Conference on Solutions of PDE's in periodic media.
定期媒体中偏微分方程解决方案会议。
  • 批准号:
    0100599
  • 财政年份:
    2001
  • 资助金额:
    $ 10.99万
  • 项目类别:
    Standard Grant
Conference in Harmonic Analysis
谐波分析会议
  • 批准号:
    0070592
  • 财政年份:
    2000
  • 资助金额:
    $ 10.99万
  • 项目类别:
    Standard Grant
Boundary and Interior Regularity for Minimizers of the p-Energy and Related Functionals in Carnot-Caratheodory Spaces
卡诺-卡拉西奥多里空间中 p 能量极小值及相关泛函的边界和内部正则性
  • 批准号:
    0096081
  • 财政年份:
    1999
  • 资助金额:
    $ 10.99万
  • 项目类别:
    Standard Grant

相似海外基金

Analysis and Geometry of Conformal and Quasiconformal Mappings
共形和拟共形映射的分析和几何
  • 批准号:
    2350530
  • 财政年份:
    2024
  • 资助金额:
    $ 10.99万
  • 项目类别:
    Standard Grant
Quasiconformal and Sobolev mappings on metric measure spaces
度量测度空间上的拟共形映射和 Sobolev 映射
  • 批准号:
    22K13947
  • 财政年份:
    2022
  • 资助金额:
    $ 10.99万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Visualizaion of exteremal quasiconformal mappings
外部拟共形映射的可视化
  • 批准号:
    16K16061
  • 财政年份:
    2016
  • 资助金额:
    $ 10.99万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Topics in quasiconformal mappings and subelliptic PDE
拟共形映射和次椭圆 PDE 主题
  • 批准号:
    1503683
  • 财政年份:
    2015
  • 资助金额:
    $ 10.99万
  • 项目类别:
    Continuing Grant
Topics in Quasiconformal mappings and in PDE
拟共形映射和偏微分方程中的主题
  • 批准号:
    1101478
  • 财政年份:
    2011
  • 资助金额:
    $ 10.99万
  • 项目类别:
    Standard Grant
Quasiconformal Mappings in Geometry and Analysis
几何和分析中的拟共形映射
  • 批准号:
    1058772
  • 财政年份:
    2010
  • 资助金额:
    $ 10.99万
  • 项目类别:
    Continuing Grant
U.S.-India Workshop and ICM Satelite Conference on p-Harmonic and Quasiconformal Mappings, Chennai, India, August 2010.
美印研讨会和 ICM 卫星会议 p 谐波和拟共形映射,印度金奈,2010 年 8 月。
  • 批准号:
    1019689
  • 财政年份:
    2010
  • 资助金额:
    $ 10.99万
  • 项目类别:
    Standard Grant
Special Meeting: CRM Special Semester on Harmonic analysis, Geometric Measure Theory and Quasiconformal Mappings
特别会议:CRM调和分析、几何测度理论和拟共形映射特别学期
  • 批准号:
    0902259
  • 财政年份:
    2009
  • 资助金额:
    $ 10.99万
  • 项目类别:
    Standard Grant
Loewner Evolutions and Quasiconformal Mappings
Loewner 演化和拟共形映射
  • 批准号:
    0800968
  • 财政年份:
    2008
  • 资助金额:
    $ 10.99万
  • 项目类别:
    Continuing Grant
Quasiconformal Mappings in Geometry and Analysis
几何和分析中的拟共形映射
  • 批准号:
    0456940
  • 财政年份:
    2005
  • 资助金额:
    $ 10.99万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了