CAREER: Integration of Research and Education in the Study of Analysis and Partial Differential Equations in Carnot-Caratheodory Spaces
职业:卡诺-卡拉特奥多里空间分析和偏微分方程研究中的研究和教育一体化
基本信息
- 批准号:0134318
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-06-01 至 2009-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACT--------The research component of this proposal deals with the study of solutions to certain non-linear systems of Partial DifferentialEquations which arise in connections with the geometry of Carnot-Caratheodory spaces. More precisely, we will study the sharp regularity of solutions to quasilinear subelliptic systems, and apply the results to the theory of quasi-regular maps in Carnot groups and in more general spaces. We will study critical points of the energy for maps with target in the Heisenberg group and with domain in a Riemannian manifold or in the Minkowski space.The analysis of boundary value problems for sub-elliptic operators, and the study of qualitative and quantitative properties of solutions of some non-divergence form non-linear equations, are also part of this proposal.The educational component of this proposal is centered around the creation of Integrated Research Groups, in which undergraduate and graduate students work on basic research projects supervised by the PI. One of thegoals of this activity is the dissemination of information, through a web-based data-base, seminars, and publications. Partial differential equations are used to provide a mathematical model for real-life phenomena, such as chemical reactions, force-fields or conductivity. Such modelsallow both to better understand the phenomena and to try to forecast the future behavior of the system under study. Roughly speaking, smooth solutions to PDE's correspond to systems which can be well understood and modeled. The study of regularity of solutions consists in finding smooth solutions.The equations described in this proposal appear in the study ofmotion under constraints (as in Robot arms motion),and in the study of diffusion in a non isotropic media.
摘要-更确切地说,我们将研究拟线性次椭圆方程组解的尖锐正则性,并将结果应用于卡诺群和更一般空间中的拟正则映射理论。我们将研究以Heisenberg群为目标,以Riemann流形或Minkowski空间为区域的映射的能量临界点,亚椭圆算子边值问题的分析,非发散型非线性方程解的定性和定量性质的研究,该提案的教育部分围绕着建立综合研究小组,在该小组中,本科生和研究生在PI的监督下从事基础研究项目。这项活动的目标之一是通过网上数据库、研讨会和出版物传播信息。偏微分方程用于为现实生活中的现象提供数学模型,例如化学反应,力场或导电性。这样的模型既可以更好地理解现象,又可以预测所研究系统的未来行为。 粗略地说,PDE的光滑解对应于可以很好地理解和建模的系统。研究解的规律性在于寻找光滑解。在这个建议中描述的方程出现在研究约束下的运动(如机器人手臂运动)和研究非各向同性介质中的扩散。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luca Capogna其他文献
Regularity Theory of Quasilinear Elliptic and Parabolic Equations in the Heisenberg Group
- DOI:
10.1007/s10013-023-00644-0 - 发表时间:
2023-08-23 - 期刊:
- 影响因子:0.700
- 作者:
Luca Capogna;Giovanna Citti;Xiao Zhong - 通讯作者:
Xiao Zhong
The mixed problem in L p for some two-dimensional Lipschitz domains
- DOI:
10.1007/s00208-008-0223-6 - 发表时间:
2008-04-01 - 期刊:
- 影响因子:1.400
- 作者:
Loredana Lanzani;Luca Capogna;Russell M. Brown - 通讯作者:
Russell M. Brown
The asymptotic p-Poisson equation as $$p \rightarrow \infty $$ in Carnot-Carathéodory spaces
卡诺-卡拉西奥多里空间中的渐近 p-泊松方程 $$p
ightarrow infty $$
- DOI:
10.1007/s00208-024-02805-z - 发表时间:
2024 - 期刊:
- 影响因子:1.4
- 作者:
Luca Capogna;Gianmarco Giovannardi;A. Pinamonti;Simone Verzellesi - 通讯作者:
Simone Verzellesi
Luca Capogna的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Luca Capogna', 18)}}的其他基金
Applications of Quasiconformal Geometry and Partial Differential Equations
拟共形几何与偏微分方程的应用
- 批准号:
2141297 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Applications of Quasiconformal Geometry and Partial Differential Equations
拟共形几何与偏微分方程的应用
- 批准号:
1955992 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Topics in quasiconformal mappings and subelliptic PDE
拟共形映射和次椭圆 PDE 主题
- 批准号:
1503683 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Continuing Grant
Topics in Quasiconformal mappings and in PDE
拟共形映射和偏微分方程中的主题
- 批准号:
1449143 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant
Topics in Quasiconformal mappings and in PDE
拟共形映射和偏微分方程中的主题
- 批准号:
1101478 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Standard Grant
Two Spring Lecture Series in Analysis and PDE
分析和偏微分方程的两个春季讲座系列
- 批准号:
0751330 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
Topics in Nonlinear Subelliptic Partial Differential Equations
非线性亚椭圆偏微分方程主题
- 批准号:
0800522 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
Conference on Solutions of PDE's in periodic media.
定期媒体中偏微分方程解决方案会议。
- 批准号:
0100599 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Standard Grant
Boundary and Interior Regularity for Minimizers of the p-Energy and Related Functionals in Carnot-Caratheodory Spaces
卡诺-卡拉西奥多里空间中 p 能量极小值及相关泛函的边界和内部正则性
- 批准号:
0096081 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Core A: Administrative, Career Development, and Research Integration Core
核心 A:行政、职业发展和研究整合核心
- 批准号:
10630466 - 财政年份:2023
- 资助金额:
-- - 项目类别:
CAREER: Interactive Effects of Land Cover and Climate Change on Forest Carbon Sequestration: Integration of Research and Education to Advance Fundamental Science and Inclusivity
职业:土地覆盖和气候变化对森林碳固存的相互作用:研究和教育相结合,促进基础科学和包容性
- 批准号:
2145950 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Evolutionary and Adaptive Histories of Human Populations: Integration of Ancient DNA Research and Interactive Education
职业:人类进化和适应性历史:古代 DNA 研究和互动教育的整合
- 批准号:
1945046 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Sustainable Urine Processes through integration of Education and Research (SUPER)
职业:通过教育和研究的整合实现可持续的尿液处理(SUPER)
- 批准号:
1713704 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Continuing Grant
Core A: Administrative, Career Development and Research Integration Core
核心 A:行政、职业发展和研究整合核心
- 批准号:
10091535 - 财政年份:2013
- 资助金额:
-- - 项目类别:
CAREER: Research and Education for a Solar Future: Fundamentals of Nanocrystal Photochemistry and Integration of Solar Energy Research into Physical Chemistry Curriculum
职业:太阳能未来的研究和教育:纳米晶体光化学基础知识以及太阳能研究与物理化学课程的整合
- 批准号:
1151151 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Mass Transport in Groundwater: an Integration of Research and Experiential Education
职业:地下水中的物质传输:研究与体验式教育的结合
- 批准号:
1261005 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Sustainable Urine Processes through integration of Education and Research (SUPER)
职业:通过教育和研究的整合实现可持续的尿液处理(SUPER)
- 批准号:
1150790 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: An Effective Integration of Research and Education on High-Speed and Energy-Efficient Interconnects for Multi-Core and Multi-Thread Systems
职业:多核和多线程系统的高速和节能互连的研究和教育的有效整合
- 批准号:
0846053 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Synthesis, Phase Transitions, and Device Integration of Nanoscale Vanadium Oxides: A Research and Education Program
职业:纳米级氧化钒的合成、相变和设备集成:研究和教育项目
- 批准号:
0847169 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant