Time Changes of Markov Processes: Applications in Financial Mathematics
马尔可夫过程的时间变化:在金融数学中的应用
基本信息
- 批准号:0802720
- 负责人:
- 金额:$ 21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is concerned with stochastic modeling of financial variables, such as equity prices, foreign exchange rates, interest rates, and commodity and energy prices, and the pricing of financial derivatives, financial instruments that serve as tools to mitigate financial market and credit risk. The goal is to develop empirically realistic and analytically tractable models describing stochastic dynamics of financial variables and analytical and computational methods to implement these models. The project focuses in the following areas. (i) Develop a rich toolbox of financial models with state-dependent jumps, stochastic volatility, and default. This will be based on the methodology of time changes of Markov processes. The proposed model architecture is to pair Markov processes with analytically tractable semigroups with time changes with analytically tractable Laplace transforms to design analytically tractable processes with desired properties. (ii) Develop efficient pricing tools for derivative securities in these models based on Laplace transform inversion and, for symmetric Markov processes, on the spectral expansion method. (iii) Develop the next generation of unified credit-equity models with jumps, stochastic volatility, and default that provide a unified treatment for all financial obligations related to a given firm, including stock, debt, stock options, and credit derivatives in the framework of time changes of Markov processes with killing. Study options pricing and corporate debt valuation in this unified framework. (iv) Develop a novel class of models with mean-reverting jumps for interest rates, commodities, and energy markets by subjecting mean-reverting diffusions to time changes with jumps. The aim of this project is to develop sophisticated mathematical tools for financial practice. This research is expected to have significant practical impact. According to the Bank for International Settlements (2006), the size of the global derivatives markets is $343 trillion in notional amounts. Major market segments include interest rate, currency, equity, commodity, energy, and credit derivatives used to manage financial risks. The proposed research is expected to find applications in all of these financial market sectors. Empirically realistic and, at the same time, analytically and computationally tractable models developed in this project will facilitate consistent, fast, and accurate modeling and pricing of financial instruments used to manage market and credit risk. This will help improve efficiency and stability of financial markets. The project is also expected to have a broader mathematical impact on stochastic analysis and applied probability. Analytically tractable time changes of Markov processes developed in this project will provide a useful laboratory for theoretical developments in stochastic analysis, as well as find applications in a variety of areas that employ Markov processes for the modeling of physical, biological, engineering, and economic phenomena. The project will have an impact on education and human resources development. It is part of the long-term development effort at Northwestern University in financial engineering, including the recently established Ph.D. concentration. It will train highly qualified researchers for academia and industry.
该项目关注金融变量的随机建模,如股票价格、外汇汇率、利率、商品和能源价格,以及金融衍生品的定价,金融衍生品是作为减轻金融市场和信贷风险工具的金融工具。目标是开发经验上现实的和分析上易于处理的模型,描述金融变量的随机动态以及实现这些模型的分析和计算方法。该项目侧重于以下领域。(i)开发具有状态依赖跳跃、随机波动和违约的丰富金融模型工具箱。这将基于马尔可夫过程的时间变化方法。提出的模型架构是将马尔可夫过程与具有时间变化的可解析处理半群与可解析处理拉普拉斯变换配对,以设计具有期望性质的可解析处理过程。(ii)为这些模型中的衍生证券开发基于拉普拉斯变换反演的有效定价工具,并为对称马尔可夫过程开发基于谱展开方法的有效定价工具。(iii)建立具有跳跃、随机波动和违约的新一代统一信用-权益模型,在马尔可夫过程的时间变化框架下,对与给定企业相关的所有金融义务,包括股票、债务、股票期权和信用衍生品,提供统一的处理。在这个统一的框架下研究期权定价和公司债务估值。(iv)通过使均值回归扩散随时间变化而变化,为利率、商品和能源市场开发一类具有均值回归跳跃的新模型。这个项目的目的是为金融实践开发复杂的数学工具。本研究可望产生重大的实际影响。根据国际清算银行(2006年)的数据,全球衍生品市场的名义规模为343万亿美元。主要细分市场包括用于管理金融风险的利率、货币、股票、商品、能源和信用衍生品。拟议的研究预计将在所有这些金融市场部门找到应用。本项目开发的具有经验现实性,同时具有分析和计算可操作性的模型,将有助于对用于管理市场和信用风险的金融工具进行一致、快速和准确的建模和定价。这将有助于提高金融市场的效率和稳定性。该项目还有望对随机分析和应用概率产生更广泛的数学影响。在这个项目中开发的分析可处理的马尔可夫过程的时间变化将为随机分析的理论发展提供一个有用的实验室,并在使用马尔可夫过程进行物理,生物,工程和经济现象建模的各种领域中找到应用。该项目将对教育和人力资源发展产生影响。这是西北大学金融工程长期发展努力的一部分,包括最近设立的博士学位。它将为学术界和工业界培养高素质的研究人员。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vadim Linetsky其他文献
Long-term factorization in Heath–Jarrow–Morton models
- DOI:
10.1007/s00780-018-0365-7 - 发表时间:
2018-05-18 - 期刊:
- 影响因子:1.400
- 作者:
Likuan Qin;Vadim Linetsky - 通讯作者:
Vadim Linetsky
TIME‐CHANGED MARKOV PROCESSES IN UNIFIED CREDIT‐EQUITY MODELING
统一信用-股权建模中的时变马尔可夫过程
- DOI:
10.1111/j.1467-9965.2010.00411.x - 发表时间:
2010 - 期刊:
- 影响因子:1.6
- 作者:
Rafael Mendoza;Peter Carr;Vadim Linetsky - 通讯作者:
Vadim Linetsky
Partially egalitarian portfolio selection
- DOI:
10.1016/j.orl.2023.11.008 - 发表时间:
2024-01-01 - 期刊:
- 影响因子:
- 作者:
Yiming Peng;Vadim Linetsky - 通讯作者:
Vadim Linetsky
Vadim Linetsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vadim Linetsky', 18)}}的其他基金
Asset Allocation: A Statistical Learning Approach
资产配置:一种统计学习方法
- 批准号:
1916616 - 财政年份:2019
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Market Expectations, Long Term Risk, and Stochastic Spectral Theory
市场预期、长期风险和随机谱理论
- 批准号:
1536503 - 财政年份:2015
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Interest Rate Modeling at the Zero Lower Bound: Applications of Diffusions with Sticky Boundaries
零下限的利率建模:粘性边界扩散的应用
- 批准号:
1514698 - 财政年份:2015
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Spectral Methods for Optimal Stopping and First Passage Problems with Applications in Financial Mathematics
最优停止和首次通过问题的谱方法及其在金融数学中的应用
- 批准号:
1109506 - 财政年份:2011
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Multivariate Dynamic Stochastic Models of Credit Risk
信用风险的多元动态随机模型
- 批准号:
1030486 - 财政年份:2010
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
GOALI: Modeling and Managing Customer Default Risk in a Manufacturing Enterprise
目标:对制造企业中的客户违约风险进行建模和管理
- 批准号:
0654043 - 财政年份:2007
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: High-Performance Computational Methods for Continuous-Time Markov Processes in Financial Engineering
合作研究:金融工程中连续时间马尔可夫过程的高性能计算方法
- 批准号:
0422937 - 财政年份:2004
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: High-Performance Computational Methods for Continuous-Time Markov Processes in Financial Engineering
合作研究:金融工程中连续时间马尔可夫过程的高性能计算方法
- 批准号:
0223354 - 财政年份:2002
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Research and Education in Financial Engineering
金融工程研究与教育
- 批准号:
0200429 - 财政年份:2002
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
相似海外基金
Resolving deep animal phylogeny with irreversible and unrepeatable genomic changes
通过不可逆和不可重复的基因组变化解决深层动物系统发育
- 批准号:
EP/Y023668/1 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Fellowship
Drivers and impacts of insect biodiversity changes across pantropical forests
泛热带森林昆虫生物多样性变化的驱动因素和影响
- 批准号:
MR/X032949/1 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Fellowship
RII Track-4:NSF: Investigation of Stress Induced Birefringence and Refractive Index Changes in Glass for Fabricating Novel Optics
RII Track-4:NSF:用于制造新型光学器件的玻璃中应力引起的双折射和折射率变化的研究
- 批准号:
2327218 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
A novel technology to understand environmental changes in marine sediments
了解海洋沉积物环境变化的新技术
- 批准号:
MR/X035387/1 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Fellowship
Atypical Chemokine Receptors orchestrate changes in vascular patterning during fibrotic liver disease via Endothelial-to-Mesenchymal Transition.
非典型趋化因子受体通过内皮-间质转化协调纤维化肝病期间血管模式的变化。
- 批准号:
MR/Y013751/1 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Research Grant
LTREB: Collaborative Research: Long-term changes in peatland C fluxes and the interactive role of altered hydrology, vegetation, and redox supply in a changing climate
LTREB:合作研究:泥炭地碳通量的长期变化以及气候变化中水文、植被和氧化还原供应变化的相互作用
- 批准号:
2411998 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Unravelling dengue virus structural dynamics and conformational changes using high-speed atomic force microscopy
使用高速原子力显微镜揭示登革热病毒结构动力学和构象变化
- 批准号:
24K18450 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
OBSERVATION OF ECOSYSTEM CHANGES FOR ACTION (OBSGESSION)
观察生态系统变化以采取行动(OBBGESSION)
- 批准号:
10107374 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
EU-Funded
Embracing Changes for Responsive Video-sharing Services
拥抱响应式视频共享服务的变革
- 批准号:
DP240101814 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Discovery Projects
The Pleistocene history of coral reef growth and coral community changes in the Ryukyu Islands and Hawaii
琉球群岛和夏威夷的更新世珊瑚礁生长史和珊瑚群落变化
- 批准号:
24K07155 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




