Spectral Methods for Optimal Stopping and First Passage Problems with Applications in Financial Mathematics

最优停止和首次通过问题的谱方法及其在金融数学中的应用

基本信息

  • 批准号:
    1109506
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-08-01 至 2015-07-31
  • 项目状态:
    已结题

项目摘要

This project develops a novel class of analytical and computational methods based on spectral analysis to solve first passage and optimal stopping problems for a class of Markov processes. The objective of an optimal stopping problem is to determine optimal decision timing to maximize reward in the face of uncertainty modeled by a stochastic process. The objective of a first passage problem is to determine the probability distribution of the first time a stochastic process passes through a boundary. These mathematical problems arise in a wide variety of applications in financial mathematics, including modeling credit risk (the risk of default of a borrower on its debt, such as a corporate bond), evaluating financial contracts with early exercise rights, such as American-style options and callable and convertible bonds, and real options. The class of Markov processes under study are jump-diffusion processes that can be constructed by stochastic time changes of one-dimensional diffusions. The methods developed in this project are based on representing conditional expectation operators associated with Markov processes by eigenfunction expansions. Efficient computational algorithms will be developed for Markov processes whose eigenfunctions are expressed in terms of orthogonal polynomials. Many of the most important stochastic processes in financial mathematics belong to this category, including the Ornstein-Uhlenbeck, Cox-Ingersoll-Ross, and constant elasticity of variance (CEV) diffusions, as well as pure jump and jump-diffusion processes arising from time changing these diffusions.The novel analytical methods and computational algorithms developed in this project will be applied to a range of problems in financial mathematics in the areas of modeling credit risk and evaluating financial contracts with early exercise rights in a variety of markets, including bond markets, equity markets, commodities and energy markets, and to real options and irreversible investment decisions. The mathematical methods developed in this project will help financial institutions to accurately evaluate and manage the risk of a variety of financial transactions. They will also help non-financial firms make better managerial decisions by facilitating applications of real options analysis. The project is expected to have a broader mathematical impact on research on optimal stopping and first passage problems. The project will also have an impact on education and human resources development. It is part of the long-term effort at Northwestern in financial mathematics and engineering, including the Ph.D. concentration in this area. It will train highly qualified researchers for academia and industry.
该项目开发了一类基于谱分析的新型分析和计算方法,以解决一类马尔可夫过程的首次通过和最优停止问题。最佳停止问题的目标是确定最佳决策时机,以在面对随机过程建模的不确定性时最大化奖励。首次通过问题的目标是确定随机过程第一次通过边界的概率分布。这些数学问题出现在金融数学的各种应用中,包括信用风险建模(借款人债务违约的风险,例如公司债券),评估具有早期行使权的金融合同,例如美式期权、可赎回和可转换债券以及实物期权。正在研究的一类马尔可夫过程是跳跃扩散过程,可以通过一维扩散的随机时间变化来构造。该项目中开发的方法基于通过特征函数展开来表示与马尔可夫过程相关的条件期望算子。将为马尔可夫过程开发有效的计算算法,其特征函数用正交多项式表示。 金融数学中许多最重要的随机过程都属于这一类,包括 Ornstein-Uhlenbeck、Cox-Ingersoll-Ross 和恒定方差弹性 (CEV) 扩散,以及因时间改变这些扩散而产生的纯跳跃和跳跃扩散过程。该项目中开发的新颖分析方法和计算算法将应用于金融数学中的一系列问题 在信用风险建模和评估各种市场(包括债券市场、股票市场、大宗商品和能源市场)以及实物期权和不可逆转投资决策中具有早期行使权的金融合同领域。该项目开发的数学方法将帮助金融机构准确评估和管理各种金融交易的风险。它们还将通过促进实物期权分析的应用来帮助非金融公司做出更好的管理决策。该项目预计将对最佳停止和首次通过问题的研究产生更广泛的数学影响。该项目还将对教育和人力资源开发产生影响。这是西北大学在金融数学和工程领域长期努力的一部分,包括博士学位。集中在这个领域。 它将为学术界和工业界培养高素质的研究人员。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vadim Linetsky其他文献

Long-term factorization in Heath–Jarrow–Morton models
  • DOI:
    10.1007/s00780-018-0365-7
  • 发表时间:
    2018-05-18
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Likuan Qin;Vadim Linetsky
  • 通讯作者:
    Vadim Linetsky
TIME‐CHANGED MARKOV PROCESSES IN UNIFIED CREDIT‐EQUITY MODELING
统一信用-股权建模中的时变马尔可夫过程
  • DOI:
    10.1111/j.1467-9965.2010.00411.x
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Rafael Mendoza;Peter Carr;Vadim Linetsky
  • 通讯作者:
    Vadim Linetsky
Partially egalitarian portfolio selection
  • DOI:
    10.1016/j.orl.2023.11.008
  • 发表时间:
    2024-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yiming Peng;Vadim Linetsky
  • 通讯作者:
    Vadim Linetsky

Vadim Linetsky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vadim Linetsky', 18)}}的其他基金

Asset Allocation: A Statistical Learning Approach
资产配置:一种统计学习方法
  • 批准号:
    1916616
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Market Expectations, Long Term Risk, and Stochastic Spectral Theory
市场预期、长期风险和随机谱理论
  • 批准号:
    1536503
  • 财政年份:
    2015
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Interest Rate Modeling at the Zero Lower Bound: Applications of Diffusions with Sticky Boundaries
零下限的利率建模:粘性边界扩散的应用
  • 批准号:
    1514698
  • 财政年份:
    2015
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Multivariate Dynamic Stochastic Models of Credit Risk
信用风险的多元动态随机模型
  • 批准号:
    1030486
  • 财政年份:
    2010
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Time Changes of Markov Processes: Applications in Financial Mathematics
马尔可夫过程的时间变化:在金融数学中的应用
  • 批准号:
    0802720
  • 财政年份:
    2008
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
GOALI: Modeling and Managing Customer Default Risk in a Manufacturing Enterprise
目标:对制造企业中的客户违约风险进行建模和管理
  • 批准号:
    0654043
  • 财政年份:
    2007
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: High-Performance Computational Methods for Continuous-Time Markov Processes in Financial Engineering
合作研究:金融工程中连续时间马尔可夫过程的高性能计算方法
  • 批准号:
    0422937
  • 财政年份:
    2004
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: High-Performance Computational Methods for Continuous-Time Markov Processes in Financial Engineering
合作研究:金融工程中连续时间马尔可夫过程的高性能计算方法
  • 批准号:
    0223354
  • 财政年份:
    2002
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Research and Education in Financial Engineering
金融工程研究与教育
  • 批准号:
    0200429
  • 财政年份:
    2002
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Variational Optimal Transport Methods for Nonlinear Filtering
非线性滤波的变分最优传输方法
  • 批准号:
    2318977
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Liver Fibrosis: Leveraging Novel Statistical Methods to Determine Optimal Screening Strategy for People Living with Type 2 Diabetes
肝纤维化:利用新的统计方法确定 2 型糖尿病患者的最佳筛查策略
  • 批准号:
    488421
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Operating Grants
Analysis of Nna1's genetic changes and explore for optimal treatment methods
分析Nna1基因变化并探索最佳治疗方法
  • 批准号:
    23K06318
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
On the reliability of computational algorithms in optimal control methods using highly expressive non-differentiable functions
使用高表达不可微函数的最优控制方法中计算算法的可靠性
  • 批准号:
    23K13359
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Computational Methods for Optimal Transport via Fluid Flows
合作研究:流体流动优化传输的计算方法
  • 批准号:
    2313454
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Identifying optimal primary care models for adults with intellectual and developmental disabilities in Ontario: a mixed methods study
确定安大略省智力和发育障碍成年人的最佳初级保健模式:混合方法研究
  • 批准号:
    489554
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Operating Grants
Machine Learning Methods Predicting Optimal Mechanical Properties of Carbon Fibre Thermoplastics
预测碳纤维热塑性塑料最佳机械性能的机器学习方法
  • 批准号:
    546625-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Optimisation Methods for Optimal Transport
最佳运输的优化方法
  • 批准号:
    2740715
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Studentship
Advanced Optimal Control Methods for Non-Linear and Distributed-Parameter Processes
非线性和分布式参数过程的先进优化控制方法
  • 批准号:
    RGPIN-2020-04352
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Improved Numerical Methods for Solving Optimal Control Problems with Nonsmooth and Singular Solutions
解决具有非光滑和奇异解的最优控制问题的改进数值方法
  • 批准号:
    2031213
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了