Multivariate Dynamic Stochastic Models of Credit Risk

信用风险的多元动态随机模型

基本信息

  • 批准号:
    1030486
  • 负责人:
  • 金额:
    $ 17.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-01 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

This project develops stochastic models of credit risk. Credit risk is the risk that a financial counterparty will default on its financial obligation. The research objective of the project is to develop models describing multivariate stochastic dynamics of credit risk and analytical and computational tools to help implement the models in industrial practice and public policy. The mathematical modeling framework for arrivals of defaults of multiple counterparties (obligors) will be based on multivariate random time changes of Markov processes. The key features of the proposed modeling framework important in applications are that they can achieve any desired level of correlation among default (failure) times of multiple obligors and that the simultaneous defaults (failures) are possible (have positive probability), thus enabling the researcher to model default clustering phenomena. The project will develop an analytical methodology for this class of models based on the spectral theory. This will allow explicit analytical calculations for multivariate default (failure) time distributions by explicitly computing spectral expansions in problems of moderate size. The project will also develop a simulation methodology to deal with large problems with many obligors that cannot be efficiently solved by the analytical spectral method. If successful, stochastic models and analytical and computational tools developed in this project will help better understand and model credit risk in the financial industry and will aid in the development of public policy to regulate financial institutions. In addition to applications in finance, the mathematical modeling framework and analytical and computational tools developed in the project will advance general stochastic modeling methodology that is applicable to a wide range of reliability and failure applications, including computer and communications networks, electric power grid, manufacturing, and biological systems.
本计画发展信用风险的随机模型。信贷风险指金融对手方未能履行其金融责任的风险。该项目的研究目标是开发描述信用风险的多变量随机动态的模型以及分析和计算工具,以帮助在工业实践和公共政策中实施这些模型。多个交易对手(债务人)违约到达的数学建模框架将基于马尔可夫过程的多变量随机时间变化。所提出的建模框架在应用中的重要的关键特征是,它们可以实现任何期望的水平之间的相关性的多个债务人的违约(故障)时间,同时违约(故障)是可能的(有积极的概率),从而使研究人员模型违约集群现象。该项目将根据谱理论为这类模型开发一种分析方法。这将允许显式的分析计算多元违约(故障)时间分布显式计算的谱展开问题的中等规模。该项目还将开发一种模拟方法,以处理具有许多债务人的大型问题,这些问题无法通过分析谱法有效解决。如果成功的话,在这个项目中开发的随机模型和分析计算工具将有助于更好地理解和模拟金融行业的信用风险,并将有助于制定公共政策来监管金融机构。除了在金融领域的应用,该项目开发的数学建模框架和分析与计算工具还将推进通用随机建模方法,该方法适用于广泛的可靠性和故障应用,包括计算机和通信网络、电网、制造业和生物系统。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vadim Linetsky其他文献

Long-term factorization in Heath–Jarrow–Morton models
  • DOI:
    10.1007/s00780-018-0365-7
  • 发表时间:
    2018-05-18
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Likuan Qin;Vadim Linetsky
  • 通讯作者:
    Vadim Linetsky
TIME‐CHANGED MARKOV PROCESSES IN UNIFIED CREDIT‐EQUITY MODELING
统一信用-股权建模中的时变马尔可夫过程
  • DOI:
    10.1111/j.1467-9965.2010.00411.x
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Rafael Mendoza;Peter Carr;Vadim Linetsky
  • 通讯作者:
    Vadim Linetsky
Partially egalitarian portfolio selection
  • DOI:
    10.1016/j.orl.2023.11.008
  • 发表时间:
    2024-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yiming Peng;Vadim Linetsky
  • 通讯作者:
    Vadim Linetsky

Vadim Linetsky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vadim Linetsky', 18)}}的其他基金

Asset Allocation: A Statistical Learning Approach
资产配置:一种统计学习方法
  • 批准号:
    1916616
  • 财政年份:
    2019
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Market Expectations, Long Term Risk, and Stochastic Spectral Theory
市场预期、长期风险和随机谱理论
  • 批准号:
    1536503
  • 财政年份:
    2015
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Interest Rate Modeling at the Zero Lower Bound: Applications of Diffusions with Sticky Boundaries
零下限的利率建模:粘性边界扩散的应用
  • 批准号:
    1514698
  • 财政年份:
    2015
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Spectral Methods for Optimal Stopping and First Passage Problems with Applications in Financial Mathematics
最优停止和首次通过问题的谱方法及其在金融数学中的应用
  • 批准号:
    1109506
  • 财政年份:
    2011
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Time Changes of Markov Processes: Applications in Financial Mathematics
马尔可夫过程的时间变化:在金融数学中的应用
  • 批准号:
    0802720
  • 财政年份:
    2008
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
GOALI: Modeling and Managing Customer Default Risk in a Manufacturing Enterprise
目标:对制造企业中的客户违约风险进行建模和管理
  • 批准号:
    0654043
  • 财政年份:
    2007
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: High-Performance Computational Methods for Continuous-Time Markov Processes in Financial Engineering
合作研究:金融工程中连续时间马尔可夫过程的高性能计算方法
  • 批准号:
    0422937
  • 财政年份:
    2004
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: High-Performance Computational Methods for Continuous-Time Markov Processes in Financial Engineering
合作研究:金融工程中连续时间马尔可夫过程的高性能计算方法
  • 批准号:
    0223354
  • 财政年份:
    2002
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Research and Education in Financial Engineering
金融工程研究与教育
  • 批准号:
    0200429
  • 财政年份:
    2002
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

Dynamic Credit Rating with Feedback Effects
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目

相似海外基金

CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
  • 批准号:
    2240982
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
  • 批准号:
    2240981
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
NSF-BSF: Real-Time Robust Estimation and Stochastic Control for Dynamic Systems with Additive Heavy-Tailed Uncertainties
NSF-BSF:具有加性重尾不确定性的动态系统的实时鲁棒估计和随机控制
  • 批准号:
    2317583
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Understanding the Critical Role of Seasonality for El Niño/Southern Oscillation (ENSO) Variability, Using Empirical Stochastic-Dynamic Models and Physics-Based Coupled Models
使用经验随机动态模型和基于物理的耦合模型了解季节性对厄尔尼诺/南方涛动 (ENSO) 变异性的关键作用
  • 批准号:
    2311162
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Online stochastic optimization for dynamic operations management systems
动态运营管理系统的在线随机优化
  • 批准号:
    RGPIN-2021-03796
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Discovery Grants Program - Individual
Parametric Resonance and Stochastic Dynamic Stability of Structures: Theory, Experiments, and Applications
结构的参数共振和随机动态稳定性:理论、实验和应用
  • 批准号:
    RGPIN-2019-06069
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Discovery Grants Program - Individual
Stochastic dynamic programming for modelling and solving extended multivariate structural models
用于建模和求解扩展多​​元结构模型的随机动态规划
  • 批准号:
    RGPIN-2018-04432
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Discovery Grants Program - Individual
Fluid Models for Stochastic Dynamic Transportation Problems
随机动态运输问题的流体模型
  • 批准号:
    568131-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Postdoctoral Fellowships
Dynamic Response and Stochastic Mechanics of Composite Materials and Structures
复合材料和结构的动态响应和随机力学
  • 批准号:
    RGPIN-2017-06644
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Discovery Grants Program - Individual
Data-driven stochastic dynamic programming approaches for optimal planning of disease screening and chronic disorder management
数据驱动的随机动态规划方法,用于疾病筛查和慢性疾病管理的优化规划
  • 批准号:
    RGPIN-2018-06596
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了