Pseudoholomorphic curves in low-dimensional topology
低维拓扑中的伪全纯曲线
基本信息
- 批准号:0806037
- 负责人:
- 金额:$ 34.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS-0806037Principal Investigator: Michael L. HutchingsThe main part of the project is to develop "embedded contacthomology" (ECH), a new invariant of a contact three-manifold,which is defined in terms of periodic orbits of the Reeb flow andembedded pseudoholomorphic curves in the symplectization. ECH isconjecturally isomorphic to versions of the Seiberg-Witten andOzsvath-Szabo Floer homologies. Some specific goals of theproject are to further develop the analytical foundations of ECH;to create tools for computing ECH, particularly in terms of openbook decompositions; to use ECH to obtain lower bounds on numbersof Reeb orbits; and to work towards extending ECH to a moregeneral theory which would unify it with the Ozsvath-Szabo Floerhomology. Some broader goals are to use ECH machinery to helpcompute symplectic field theory in three dimensions, and toexplore Floer-theoretic invariants of families.The embedded contact homology developed in this project lies onthe interface between dynamics and low-dimensional topology.Dynamics is concerned with the behavior of physical systems overtime, while low-dimensional topology studies the possible shapesof curved spaces in three and four dimensions. Embedded contacthomology allows one to obtain deep topological information froman understanding of dynamics; and conversely to obtain importantdynamical information, such as the existence of stableconfigurations, from topological conditions.
摘要奖:DMS-0806037首席研究员:Michael L.Hutchings该项目的主要部分是开发一种新的接触三流形的不变量,它是根据Reeb流的周期轨道和辛化中的嵌入伪全纯曲线定义的。ECH猜想同构于Seiberg-Witten和Ozsvath-Szabo Floer同调的版本。该项目的一些具体目标是进一步发展ECH的分析基础;创建计算ECH的工具,特别是在Openbook分解方面;使用ECH获得Reeb轨道数的下界;以及致力于将ECH扩展为更一般的理论,将其与Ozsvath-Szabo Floer同调统一。一些更广泛的目标是使用ECH机制来帮助计算三维辛场理论,并探索族的Floer理论不变量。本项目中开发的嵌入接触同调位于动力学和低维拓扑之间的界面上。动力学涉及物理系统的超时行为,而低维拓扑研究三维和四维弯曲空间的可能形状。嵌入式接触学允许人们从对动力学的理解中获得深刻的拓扑信息,反之,从拓扑条件中获得重要的动力学信息,如稳定构型的存在。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Hutchings其他文献
Michael Hutchings的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Hutchings', 18)}}的其他基金
Contact homology, dynamics, and embeddings
接触同源性、动力学和嵌入
- 批准号:
2005437 - 财政年份:2020
- 资助金额:
$ 34.16万 - 项目类别:
Standard Grant
Contact Homology and Quantitative Symplectic Geometry
联系同调与定量辛几何
- 批准号:
1708899 - 财政年份:2017
- 资助金额:
$ 34.16万 - 项目类别:
Continuing Grant
The dynamics of antimicrobial resistance gene prevalence on a commercial pig farm: implications for policy
商业养猪场抗菌素耐药性基因流行的动态:对政策的影响
- 批准号:
NE/N019806/1 - 财政年份:2016
- 资助金额:
$ 34.16万 - 项目类别:
Research Grant
Symplectic Field Theory VIII: Symplectic Homology
辛场论八:辛同调
- 批准号:
1636665 - 财政年份:2016
- 资助金额:
$ 34.16万 - 项目类别:
Standard Grant
IHES summer school on Moduli Problems in Symplectic Geometry
IHES 辛几何模问题暑期学校
- 批准号:
1510109 - 财政年份:2015
- 资助金额:
$ 34.16万 - 项目类别:
Standard Grant
Floer homology and contact and symplectic geometry
弗洛尔同调性以及接触几何和辛几何
- 批准号:
1406312 - 财政年份:2014
- 资助金额:
$ 34.16万 - 项目类别:
Standard Grant
Floer homology and low dimensional contact and symplectic geometry
Florer 同调与低维接触和辛几何
- 批准号:
1105820 - 财政年份:2011
- 资助金额:
$ 34.16万 - 项目类别:
Standard Grant
Pseudoholomorphic curves in low-dimensional topology
低维拓扑中的伪全纯曲线
- 批准号:
0505884 - 财政年份:2005
- 资助金额:
$ 34.16万 - 项目类别:
Continuing Grant
Pseudoholomorphic Curves in Low-Dimensional Topology
低维拓扑中的伪全纯曲线
- 批准号:
0204681 - 财政年份:2002
- 资助金额:
$ 34.16万 - 项目类别:
Continuing Grant
相似国自然基金
Lienard系统的不变代数曲线、可积性与极限环问题研究
- 批准号:12301200
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Analysis of CHEOPS light curves for eclipsing binaries with very low mass stars
具有极低质量恒星的食双星的 CHEOPS 光变曲线分析
- 批准号:
2312200 - 财政年份:2019
- 资助金额:
$ 34.16万 - 项目类别:
Studentship
Proposal of low cycle fatigue design curves for steel members in civil structures
土木结构钢构件低周疲劳设计曲线的提出
- 批准号:
16K18139 - 财政年份:2016
- 资助金额:
$ 34.16万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Low-dimensional topology and the complex of curves
低维拓扑和复合曲线
- 批准号:
EP/I028870/1 - 财政年份:2011
- 资助金额:
$ 34.16万 - 项目类别:
Research Grant
R21: Entrainment of Peripheral Circadian Rhythms
R21:周围昼夜节律的牵引
- 批准号:
7176583 - 财政年份:2007
- 资助金额:
$ 34.16万 - 项目类别:
Holomorphic Curves and Low-Dimensional Topology
全纯曲线和低维拓扑
- 批准号:
0706777 - 财政年份:2007
- 资助金额:
$ 34.16万 - 项目类别:
Standard Grant
R21: Entrainment of Peripheral Circadian Rhythms
R21:周围昼夜节律的牵引
- 批准号:
7352792 - 财政年份:2007
- 资助金额:
$ 34.16万 - 项目类别:
Pseudoholomorphic curves in low-dimensional topology
低维拓扑中的伪全纯曲线
- 批准号:
0505884 - 财政年份:2005
- 资助金额:
$ 34.16万 - 项目类别:
Continuing Grant
Optimization and simulation modelling of experience curves for low-GHG technologies
低温室气体技术经验曲线的优化和模拟建模
- 批准号:
301807-2005 - 财政年份:2005
- 资助金额:
$ 34.16万 - 项目类别:
Postgraduate Scholarships - Master's
Optimization and simulation modelling of experience curves for low-GHG technologies
低温室气体技术经验曲线的优化和模拟建模
- 批准号:
301807-2004 - 财政年份:2004
- 资助金额:
$ 34.16万 - 项目类别:
Postgraduate Scholarships - Master's
FRG: Holomorphic Curves in Low Dimensional Topology
FRG:低维拓扑中的全纯曲线
- 批准号:
0244663 - 财政年份:2003
- 资助金额:
$ 34.16万 - 项目类别:
Continuing Grant