Contact Homology and Quantitative Symplectic Geometry

联系同调与定量辛几何

基本信息

  • 批准号:
    1708899
  • 负责人:
  • 金额:
    $ 33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

Symplectic geometry is the fundamental geometry underlying classical mechanics. In classical mechanics, the state of a physical system at any given time is described by n position coordinates and n momentum coordinates. These 2n coordinates specify a point in a 2n-dimensional phase space. The phase space has the structure of a symplectic manifold, and understanding the geometry of this symplectic manifold is crucial to understanding how the physical system evolves in time. This project will investigate closely related notions of "space" and "time" in symplectic geometry. The "space" notion to be studied is that of a symplectic embedding: this is a change of coordinates which preserves the symplectic structure but may make the equations of motion easier to solve. The "time" notion to be investigated is that of a Reeb orbit: this describes behavior which repeats in time, such as a planet orbiting around a star.In order to study symplectic embeddings and Reeb orbits, new technology in various forms of contact homology will be developed. In particular, foundational work will be carried out on cylindrical contact homology and its more generally defined counterpart, positive circle-equivariant symplectic homology. This will lead to new symplectic embedding obstructions. Also, new infrastructure in embedded contact homology (ECH) will be constructed. In particular, a filtration on ECH determined by a transverse knot in a contact three-manifold will be studied, with applications to the dynamics of area-preserving surface diffeomorphisms. The "J-zero" index on ECH will be further studied with applications to proving the existence of infinitely many Reeb orbits in more cases. With the help of this machinery, a circle of questions surrounding Viterbo's conjecture, on the uniqueness of normalized symplectic capacities for convex sets, will be investigated. Known symplectic capacities will be compared, and the symplectic significance of convexity will be elaborated. New algorithms for computing symplectic capacities will be developed, in order to enable computer-assisted searches for counterexamples to Viterbo's and related conjectures. Applications of other versions of contact homology to questions in quantitative symplectic geometry will also be explored. These other versions of contact homology include rational symplectic field theory, and possible analogues of ECH in higher dimensions.
辛几何是经典力学的基础几何。在经典力学中,物理系统在任何给定时间的状态由n个位置坐标和n个动量坐标来描述。这2n个坐标指定了2n维相空间中的一个点。相空间具有辛流形的结构,理解辛流形的几何结构对于理解物理系统如何随时间演变至关重要。本项目将探讨辛几何中“空间”和“时间”的密切相关概念。要研究的“空间”概念是辛嵌入的概念:这是一种坐标的变化,它保留了辛结构,但可能使运动方程更容易求解。要研究的“时间”概念是里布轨道:它描述了在时间上重复的行为,比如一颗行星绕着一颗恒星公转。为了研究辛嵌入和Reeb轨道,将开发各种形式的接触同源新技术。特别是柱面接触同调及其更广泛定义的对应物正圆等变辛同调的基础工作。这将导致新的辛嵌入障碍。此外,还将构建嵌入式接触同源性(ECH)的新基础结构。特别是,在接触三流形中由横向结决定的ECH上的过滤将被研究,并应用于保面积表面微分同态的动力学。将进一步研究ECH上的“j - 0”指数,并应用于证明在更多情况下存在无限多个Reeb轨道。在这个机制的帮助下,围绕Viterbo猜想的一系列问题,关于凸集的规格化辛能力的唯一性,将被研究。将比较已知的辛容量,并阐述凸性的辛意义。将开发计算辛能力的新算法,以便使计算机辅助搜索维泰博和相关猜想的反例成为可能。其他版本的接触同调在定量辛几何问题中的应用也将被探讨。这些其他版本的接触同调包括有理辛场论,以及可能的高维ECH的类似物。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Axiomatic S1 Morse–Bott theory
公理化 S1 莫尔斯波特理论
  • DOI:
    10.2140/agt.2020.20.1641
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    Hutchings, Michael;Nelson, Jo
  • 通讯作者:
    Nelson, Jo
ECH capacities and the Ruelle invariant
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Hutchings其他文献

Michael Hutchings的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Hutchings', 18)}}的其他基金

Contact homology, dynamics, and embeddings
接触同源性、动力学和嵌入
  • 批准号:
    2005437
  • 财政年份:
    2020
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Current Trends in Symplectic Topology
辛拓扑的当前趋势
  • 批准号:
    1916934
  • 财政年份:
    2019
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
The dynamics of antimicrobial resistance gene prevalence on a commercial pig farm: implications for policy
商业养猪场抗菌素耐药性基因流行的动态:对政策的影响
  • 批准号:
    NE/N019806/1
  • 财政年份:
    2016
  • 资助金额:
    $ 33万
  • 项目类别:
    Research Grant
Symplectic Field Theory VIII: Symplectic Homology
辛场论八:辛同调
  • 批准号:
    1636665
  • 财政年份:
    2016
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
IHES summer school on Moduli Problems in Symplectic Geometry
IHES 辛几何模问题暑期学校
  • 批准号:
    1510109
  • 财政年份:
    2015
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Floer homology and contact and symplectic geometry
弗洛尔同调性以及接触几何和辛几何
  • 批准号:
    1406312
  • 财政年份:
    2014
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Floer homology and low dimensional contact and symplectic geometry
Florer 同调与低维接触和辛几何
  • 批准号:
    1105820
  • 财政年份:
    2011
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Pseudoholomorphic curves in low-dimensional topology
低维拓扑中的伪全纯曲线
  • 批准号:
    0806037
  • 财政年份:
    2008
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Pseudoholomorphic curves in low-dimensional topology
低维拓扑中的伪全纯曲线
  • 批准号:
    0505884
  • 财政年份:
    2005
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Pseudoholomorphic Curves in Low-Dimensional Topology
低维拓扑中的伪全纯曲线
  • 批准号:
    0204681
  • 财政年份:
    2002
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant

相似海外基金

Study on Contact Homology by String Topology
弦拓扑接触同调研究
  • 批准号:
    23KJ1238
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Natural products inhibitors targeting homology-directed DNA repair for cancer therapy
针对癌症治疗的同源定向 DNA 修复的天然产物抑制剂
  • 批准号:
    10651048
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
Structures in Khovanov-Rozansky homology
Khovanov-Rozansky 同源结构
  • 批准号:
    2302305
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
The role of reticulon homology domain (RHD) protein and related family members in the sarco(endo)plasmic formation and regulation in the cardiac myocyte
网织同源结构域(RHD)蛋白及相关家族成员在心肌细胞肌(内)质形成和调节中的作用
  • 批准号:
    488705
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Operating Grants
A study on the homology group of symplectic derivation Lie algebras
辛导李代数同调群的研究
  • 批准号:
    22KJ0912
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Hidden Symmetries: Internal and External Equivariance in Floer Homology
隐藏的对称性:Floer 同调中的内部和外部等变
  • 批准号:
    2303823
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Instanton homology in low-dimensional topology
低维拓扑中的瞬子同调
  • 批准号:
    2304877
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
CAREER: Heegaard Floer homology and low-dimensional topology
职业:Heegaard Florer 同调和低维拓扑
  • 批准号:
    2237131
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Research Initiation Award: Toward Understanding Persistent Homology in Topological Data Analysis
研究启动奖:理解拓扑数据分析中的持久同源性
  • 批准号:
    2300360
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
CDS&E-MSS: Topological Learning with Multiparameter Persistent Homology
CDS
  • 批准号:
    2324353
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了