Floer homology and contact and symplectic geometry

弗洛尔同调性以及接触几何和辛几何

基本信息

  • 批准号:
    1406312
  • 负责人:
  • 金额:
    $ 25.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-01 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

The set of all possible configurations of a physical system generally has the structure of a symplectic manifold. When one restricts to configurations with a fixed energy, one typically obtains a contact manifold. Understanding the geometry of symplectic manifolds and contact manifolds is thus important to understanding the dynamics of physical systems. The following two geometric questions about such manifolds are of particular interest. First, one would like to understand Reeb orbits on contact manifolds, which correspond to physical behavior which repeats over time. Second, one would like to understand when one symplectic manifold can be symplectically embedded into another, in order to better understand the relations between different symplectic manifolds. Contact homology is a powerful tool, currently under development, which can be applied to both of these questions.The project will develop the foundations, computation, and applications of various kinds of contact homology. In particular, embedded contact homology (ECH) will be extended to a functor on three-dimensional contact manifolds and four-dimensional strong symplectic cobordisms. The foundations of ECH and other kinds of contact homology will be constructed directly in terms of holomorphic curves when possible, in order to more closely relate them to geometry. ECH capacities (quantitative invariants which obstruct symplectic embeddings in four dimensions) will be computed in more examples and related to geodesic flows and Hamiltonian dynamics. Analogues of ECH capacities for other kinds of contact homology, such as cylindrical contact homology and rational symplectic field theory, will be constructed and studied. These new tools will be used to explore whether the Weinstein conjecture can be extended by increasing the lower bound on the number of Reeb orbits or proving the existence of short Reeb orbits.
物理系统的所有可能构型的集合通常具有辛流形的结构。当人们限制到具有固定能量的构型时,通常会得到一个接触流形。因此,了解辛流形和接触流形的几何对于理解物理系统的动力学很重要。下面关于这种流形的两个几何问题特别有趣。首先,人们想要了解接触流形上的Reeb轨道,它对应于随时间重复的物理行为。其次,为了更好地理解不同辛流形之间的关系,人们希望了解一个辛流形何时可以辛嵌入到另一个辛流形中。接触同调是一个强大的工具,目前正在开发中,它可以应用于这两个问题。该项目将发展各种接触同调的基础、计算和应用。具体地说,嵌入接触同调(ECH)将被推广到三维接触流形上的函子和四维强辛余边线上。ECH和其他类型的接触同调的基础将在可能的情况下直接用全纯曲线来构造,以便将它们与几何更紧密地联系在一起。ECH容量(阻碍四维辛嵌入的数量不变量)将在更多的例子中计算,并与测地线流和哈密顿动力学有关。对于其他类型的接触同调,例如柱面接触同调和有理辛场理论,ECH容量的模拟将被构造和研究。这些新工具将被用来探索温斯坦猜想是否可以通过增加Reeb轨道数的下限或证明短Reeb轨道的存在来扩展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Hutchings其他文献

Michael Hutchings的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Hutchings', 18)}}的其他基金

Contact homology, dynamics, and embeddings
接触同源性、动力学和嵌入
  • 批准号:
    2005437
  • 财政年份:
    2020
  • 资助金额:
    $ 25.84万
  • 项目类别:
    Standard Grant
Current Trends in Symplectic Topology
辛拓扑的当前趋势
  • 批准号:
    1916934
  • 财政年份:
    2019
  • 资助金额:
    $ 25.84万
  • 项目类别:
    Standard Grant
Contact Homology and Quantitative Symplectic Geometry
联系同调与定量辛几何
  • 批准号:
    1708899
  • 财政年份:
    2017
  • 资助金额:
    $ 25.84万
  • 项目类别:
    Continuing Grant
The dynamics of antimicrobial resistance gene prevalence on a commercial pig farm: implications for policy
商业养猪场抗菌素耐药性基因流行的动态:对政策的影响
  • 批准号:
    NE/N019806/1
  • 财政年份:
    2016
  • 资助金额:
    $ 25.84万
  • 项目类别:
    Research Grant
Symplectic Field Theory VIII: Symplectic Homology
辛场论八:辛同调
  • 批准号:
    1636665
  • 财政年份:
    2016
  • 资助金额:
    $ 25.84万
  • 项目类别:
    Standard Grant
IHES summer school on Moduli Problems in Symplectic Geometry
IHES 辛几何模问题暑期学校
  • 批准号:
    1510109
  • 财政年份:
    2015
  • 资助金额:
    $ 25.84万
  • 项目类别:
    Standard Grant
Floer homology and low dimensional contact and symplectic geometry
Florer 同调与低维接触和辛几何
  • 批准号:
    1105820
  • 财政年份:
    2011
  • 资助金额:
    $ 25.84万
  • 项目类别:
    Standard Grant
Pseudoholomorphic curves in low-dimensional topology
低维拓扑中的伪全纯曲线
  • 批准号:
    0806037
  • 财政年份:
    2008
  • 资助金额:
    $ 25.84万
  • 项目类别:
    Standard Grant
Pseudoholomorphic curves in low-dimensional topology
低维拓扑中的伪全纯曲线
  • 批准号:
    0505884
  • 财政年份:
    2005
  • 资助金额:
    $ 25.84万
  • 项目类别:
    Continuing Grant
Pseudoholomorphic Curves in Low-Dimensional Topology
低维拓扑中的伪全纯曲线
  • 批准号:
    0204681
  • 财政年份:
    2002
  • 资助金额:
    $ 25.84万
  • 项目类别:
    Continuing Grant

相似国自然基金

Fibered纽结的自同胚、Floer同调与4维亏格
  • 批准号:
    12301086
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Contact structures and Floer homology on 3-manifolds with boundary
带边界的 3 流形上的接触结构和 Floer 同源性
  • 批准号:
    1506157
  • 财政年份:
    2015
  • 资助金额:
    $ 25.84万
  • 项目类别:
    Standard Grant
Finite energy foliations, Floer and contact homology in low dimensions, Hamiltonian dynamics, braids
有限能量叶状结构、低维弗洛尔和接触同源性、哈密顿动力学、辫子
  • 批准号:
    279842737
  • 财政年份:
    2015
  • 资助金额:
    $ 25.84万
  • 项目类别:
    Research Grants
Invariants of bordered 3-manifolds and contact structures in Floer homology, connections with Khovanov homology, and applications
Floer 同调中的有界 3 流形和接触结构的不变量、与 Khovanov 同调的联系以及应用
  • 批准号:
    1406383
  • 财政年份:
    2014
  • 资助金额:
    $ 25.84万
  • 项目类别:
    Standard Grant
Contact structures, open books, and connections between Heegaard Floer homology and the Khovanov-Rozansky link homology theories
Heegaard Floer 同调与 Khovanov-Rozansky 链接同调理论之间的联系结构、开放书籍以及联系
  • 批准号:
    1251064
  • 财政年份:
    2012
  • 资助金额:
    $ 25.84万
  • 项目类别:
    Standard Grant
Contact geometry, Heegaard Floer homology and open book decompositions
接触几何、Heegaard Floer 同调和开卷分解
  • 批准号:
    1205933
  • 财政年份:
    2012
  • 资助金额:
    $ 25.84万
  • 项目类别:
    Standard Grant
Contact geometry, Heegaard Floer homology and open book decompositions
接触几何、Heegaard Floer 同调和开卷分解
  • 批准号:
    1249708
  • 财政年份:
    2012
  • 资助金额:
    $ 25.84万
  • 项目类别:
    Standard Grant
Contact manifolds and Heegaard Floer homology
接触流形和 Heegaard Florer 同源性
  • 批准号:
    1104690
  • 财政年份:
    2011
  • 资助金额:
    $ 25.84万
  • 项目类别:
    Standard Grant
Contact structures and Floer homology theories
接触结构和弗洛尔同调理论
  • 批准号:
    1105432
  • 财政年份:
    2011
  • 资助金额:
    $ 25.84万
  • 项目类别:
    Continuing Grant
Floer homology and low dimensional contact and symplectic geometry
Florer 同调与低维接触和辛几何
  • 批准号:
    1105820
  • 财政年份:
    2011
  • 资助金额:
    $ 25.84万
  • 项目类别:
    Standard Grant
Contact structures, open books, and connections between Heegaard Floer homology and the Khovanov-Rozansky link homology theories
Heegaard Floer 同调与 Khovanov-Rozansky 链接同调理论之间的联系结构、开放书籍以及联系
  • 批准号:
    1104688
  • 财政年份:
    2011
  • 资助金额:
    $ 25.84万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了