RUI: Solitary structures in nonlinear wave equations
RUI:非线性波动方程中的孤立结构
基本信息
- 批准号:0807404
- 负责人:
- 金额:$ 10.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2011-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposal concerns the investigation of nonlinear wave phenomena in shallow water waves, nonlinear optics, plasma and other areas of nonlinear physics. A comprehensive characterization of the solitary waves resulting from such phenomena is an important problem, which is far from complete. Therefore an objective of this research project is to conduct an extensive study of the nonlinear equations describing such localized wave-forms and wave-patterns by analyzing the underlying mathematical structures of the relevant solution spaces. Since the theory is shared by various physical systems, it is anticipated that the results from the proposed work would provide insights into other areas such as light waves in nonlinear optics, and spin waves in magnetic thin films. A second objective is to apply the theoretical results of this project to investigate possible mechanisms generating "rogue" waves of extremely high elevations frequently observed in open seas, and surface wave patterns in shallow water. Understanding the nature and dynamics of such extreme waves, and ultimately predicting such wave phenomena in oceans near highly populated coastal areas or at harbor entrances with heavy shipping traffic, are extremely important tasks. The proposed research activities will involve several undergraduate students over the course of this project since it will be carried out in an undergraduate institution. The students will gain firsthand research experience in applied mathematics, which may motivate them to pursue graduate studies or other career opportunities in mathematical sciences.
该提案涉及浅水波、非线性光学、等离子体和非线性物理其他领域的非线性波现象的研究。对此类现象产生的孤立波进行全面表征是一个重要问题,但还远未完成。因此,该研究项目的目标是通过分析相关解空间的基础数学结构,对描述此类局部波形和波形的非线性方程进行广泛的研究。由于该理论被各种物理系统所共享,因此预计所提出的工作的结果将为其他领域提供见解,例如非线性光学中的光波和磁性薄膜中的自旋波。第二个目标是应用该项目的理论结果来研究在公海中经常观察到的产生极高海拔“流氓”波浪以及浅水中的表面波浪模式的可能机制。了解此类极端波浪的性质和动态,并最终预测人口稠密的沿海地区附近的海洋或航运交通繁忙的港口入口处的此类波浪现象,是极其重要的任务。由于该项目将在本科机构中进行,因此拟议的研究活动将涉及多名本科生参与该项目。学生将获得应用数学的第一手研究经验,这可能会激励他们攻读数学科学领域的研究生或其他职业机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sarbarish Chakravarty其他文献
Analytical and Numerical Studies of KPI Lumps
- DOI:
10.1007/s42286-025-00119-4 - 发表时间:
2025-05-13 - 期刊:
- 影响因子:0.800
- 作者:
Sarbarish Chakravarty;Michael Zowada - 通讯作者:
Michael Zowada
Sarbarish Chakravarty的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sarbarish Chakravarty', 18)}}的其他基金
Collaborative research: RUI: Two-dimensional wave patterns and physical applications of Kadomtsev-Petviashvili web-solitons
合作研究:RUI:Kadomtsev-Petviashvili 网孤子的二维波型和物理应用
- 批准号:
1410862 - 财政年份:2014
- 资助金额:
$ 10.38万 - 项目类别:
Standard Grant
Collaborative research: Topics related to the solitary waves of the KP equation and physical applications
合作研究:与KP方程的孤立波和物理应用相关的主题
- 批准号:
1108694 - 财政年份:2011
- 资助金额:
$ 10.38万 - 项目类别:
Standard Grant
Conference on Nonlinear Waves, Integrable Systems and their Applications
非线性波、可积系统及其应用会议
- 批准号:
0513727 - 财政年份:2005
- 资助金额:
$ 10.38万 - 项目类别:
Standard Grant
RUI: The Darboux-Halphen Equations and their Generalizations
RUI:Darboux-Halphen 方程及其概括
- 批准号:
0307181 - 财政年份:2003
- 资助金额:
$ 10.38万 - 项目类别:
Standard Grant
相似海外基金
Resilience of pollinators in a changing world: impact of developmental environment on metabolism and energetic budgets in social and solitary bees
不断变化的世界中授粉媒介的复原力:发育环境对群居和独居蜜蜂新陈代谢和能量预算的影响
- 批准号:
BB/X016641/1 - 财政年份:2024
- 资助金额:
$ 10.38万 - 项目类别:
Research Grant
Pheromones, Pathogens and Pesticides: How do these interact to affect the health and productivity of social and solitary bees?
信息素、病原体和杀虫剂:它们如何相互作用来影响群居和独居蜜蜂的健康和生产力?
- 批准号:
2887261 - 财政年份:2023
- 资助金额:
$ 10.38万 - 项目类别:
Studentship
Adaptations of solitary wasp populations in a dynamic environment
动态环境中独居黄蜂种群的适应
- 批准号:
2843238 - 财政年份:2023
- 资助金额:
$ 10.38万 - 项目类别:
Studentship
Prevalence and developmental trajectories of solitary alcohol use in US young adults
美国年轻人单独饮酒的患病率和发展轨迹
- 批准号:
10741936 - 财政年份:2023
- 资助金额:
$ 10.38万 - 项目类别:
Membrane-Impermeable Glucocorticoids Act on Membrane-Associated Receptors in the Nucleus of the Solitary Tract to Affect Hepatic VLDL-TG Secretion
膜不可渗透的糖皮质激素作用于孤束核膜相关受体,影响肝脏 VLDL-TG 分泌
- 批准号:
495586 - 财政年份:2023
- 资助金额:
$ 10.38万 - 项目类别:
Mathematical analysis on solitary waves for nonlinear dispersive equations
非线性色散方程孤立波的数学分析
- 批准号:
22K20337 - 财政年份:2022
- 资助金额:
$ 10.38万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
The role of solitary chemosensory cells in periodontal homeostasis
孤立化学感应细胞在牙周稳态中的作用
- 批准号:
10542979 - 财政年份:2022
- 资助金额:
$ 10.38万 - 项目类别:
Anxious Solitary Youth Come of Age: Interpersonal Processes Link Youth Trajectories to Adjustment in Young Adulthood
焦虑的孤独青年成年后:人际交往过程将青年轨迹与青年期的适应联系起来
- 批准号:
10579211 - 财政年份:2022
- 资助金额:
$ 10.38万 - 项目类别:
Wave Turbulence and Stability of Solitary Waves
波湍流和孤立波的稳定性
- 批准号:
2155050 - 财政年份:2022
- 资助金额:
$ 10.38万 - 项目类别:
Standard Grant
Internal solitary wave-induced sediment resuspension and offshore infrastructure loading
内部孤立波引起的沉积物再悬浮和海上基础设施负荷
- 批准号:
RGPIN-2017-04568 - 财政年份:2022
- 资助金额:
$ 10.38万 - 项目类别:
Discovery Grants Program - Individual