Development of Generalized-Ensemble Algorithms and their Application in Protein Studies

广义集成算法的发展及其在蛋白质研究中的应用

基本信息

  • 批准号:
    0809002
  • 负责人:
  • 金额:
    $ 42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-07-01 至 2012-03-31
  • 项目状态:
    已结题

项目摘要

Ulrich Hansmann of Michigan Technological University is supported by an award from the Theoretical and Computational Chemistry program for work to further develop generalized-ensemble algorithms for use in protein folding simulations. Partial funding for this award has been provided by the Molecular Biophysics program within the Division of Molecular and Cellular Biology.After the successful deciphering of whole genomes a new challenge has emerged: for most of the newly found sequences we do not know the function of the corresponding proteins. Reliable computational tools that allow one to study the emergence of structure and function of proteins from their sequence of amino acids would therefore lead to deeper insight in the molecular foundation of the fundamental processes in cells. Exploring this relationship in computer simulations is extremely difficult for detailed protein models, and the computational effort to calculate accurately physical quantities increases exponentially with the number of residues in simple room-temperature simulations. In order to overcome this difficulty, the PI has pioneered the generalized ensemble approach and demonstrated its feasibility for simulation of peptides and proteins of up to 40-50 amino acids. By further advancing this approach and implementing it in his highly scalable software package SMMP the PI aims at deriving models that will describe folding and interaction of stable domains in proteins (usually consisting of 50-200 amino acids). Connecting optimization of algorithms to fundamental ideas of statistical mechanics the PI is probing folding and assembly of the 75-residue apo calbindin D9K and the 84-residue tetramer BBTA2; and binding of copper ions to the 37-residue truncated form of yeast copper thionein. His goal is to understand these processes solely from the physical interactions between the atoms within a protein, and between the protein and the surrounding environment. The work is, thus, having a broad impact on the field of biology as well as through the involvement of students, including some American Indian students, in this research.
密歇根理工大学的乌尔里希·汉斯曼因进一步开发用于蛋白质折叠模拟的广义集成算法而获得理论和计算化学计划颁发的奖项。该奖项的部分资金由分子和细胞生物学部门的分子生物物理学项目提供。在成功破译整个基因组后,出现了一个新的挑战:对于大多数新发现的序列,我们不知道相应蛋白质的功能。因此,可靠的计算工具使人们能够从蛋白质的氨基酸序列中研究蛋白质的结构和功能的出现,从而有助于更深入地了解细胞基本过程的分子基础。在计算机模拟中探索这种关系对于详细的蛋白质模型来说是极其困难的,在简单的室温模拟中,精确计算物理量的计算工作量随着残基的数量呈指数增加。为了克服这一困难,PI开创了广义集成方法的先河,并证明了其用于模拟多达40-50个氨基酸的多肽和蛋白质的可行性。通过进一步推进这一方法并将其应用于他的高度可扩展的软件包SMMP中,PI旨在推导出描述蛋白质(通常由50-200个氨基酸组成)中稳定结构域的折叠和相互作用的模型。将算法的优化与统计力学的基本思想联系起来,PI正在探索75个残基的apo calbindin D9K和84个残基的四聚体BBTA2的折叠和组装,以及铜离子与37个残基截断的酵母铜硫蛋白的结合。他的目标是仅从蛋白质内部原子之间的物理相互作用,以及蛋白质与周围环境之间的物理相互作用来理解这些过程。因此,这项工作对生物学领域产生了广泛的影响,并通过学生的参与,包括一些美国印第安人学生,参与了这项研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ulrich Hansmann其他文献

Understanding the Underlying Principles Behind Conformational Switch of Chemokines
  • DOI:
    10.1016/j.bpj.2019.11.1186
  • 发表时间:
    2020-02-07
  • 期刊:
  • 影响因子:
  • 作者:
    Prabir Khatua;Alan Ray;Ulrich Hansmann
  • 通讯作者:
    Ulrich Hansmann

Ulrich Hansmann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ulrich Hansmann', 18)}}的其他基金

Development of Generalized-Ensemble Algorithms and their Application in Protein Studies
广义集成算法的发展及其在蛋白质研究中的应用
  • 批准号:
    1266256
  • 财政年份:
    2013
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Development and Application of Generalized Ensemble Algorithms for Protein Studies
蛋白质研究广义集成算法的开发与应用
  • 批准号:
    0313618
  • 财政年份:
    2003
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Development and Application of Generalized Ensemble Algorithms for Protein-Folding
蛋白质折叠广义集成算法的开发与应用
  • 批准号:
    9981874
  • 财政年份:
    2000
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant

相似国自然基金

三维流形的Generalized Seifert Fiber分解
  • 批准号:
    11526046
  • 批准年份:
    2015
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Generalized deep unfoldingの提案と曖昧なドメイン知識モデリングへの応用
广义深度展开的提出及其在模糊领域知识建模中的应用
  • 批准号:
    24K03010
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Unique continuation and the regularity of elliptic PDEs and generalized minimal submanifolds
椭圆偏微分方程和广义最小子流形的唯一延拓和正则性
  • 批准号:
    2350351
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Near Lossless Dense Light Field Compression Using Generalized Neural Radiance Field
使用广义神经辐射场的近无损密集光场压缩
  • 批准号:
    24K20797
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
New developments on quantum information analysis by a stochastic analysis based on theory of spaces consisting of generalized functionals
基于广义泛函空间理论的随机分析量子信息分析新进展
  • 批准号:
    23K03139
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Canonical Singularities, Generalized Symmetries, and 5d Superconformal Field Theories
正则奇点、广义对称性和 5d 超共形场论
  • 批准号:
    EP/X01276X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Fellowship
Efficient Computation of Generalized Persistence Diagrams
广义持久图的高效计算
  • 批准号:
    2324632
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Diagonal Grobner Geometry of Generalized Determinantal Varieties
广义行列式簇的对角格罗布纳几何
  • 批准号:
    2344764
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Generalized prediction errors in the human cerebellum
人类小脑的广义预测误差
  • 批准号:
    10715334
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
Generalized Stochastic Nash Equilibrium Framework: Theory, Computation, and Application
广义随机纳什均衡框架:理论、计算和应用
  • 批准号:
    2231863
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Imaging Generalized and Selective Markers of Presynaptic Density In Persistent Depression With/Without Other Neuropsychiatric Symptoms After COVID-19
COVID-19 后伴有/不伴有其他神经精神症状的持续性抑郁症中突触前密度的广义和选择性标记物的成像
  • 批准号:
    488607
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了