Theory and Algorithm of Adaptive Methods for Numerical Methods

数值方法自适应方法理论与算法

基本信息

  • 批准号:
    0811272
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-01 至 2011-08-31
  • 项目状态:
    已结题

项目摘要

This proposal is on the study of advanced numerical methods for partial differential equations (PDEs) that arise from scientific and engineering applications. The theme of research is on the development, application and analysis of multilevel adaptive finite element methods. Comparing with the uniform refinement of the computational grid, adaptive finite element methods through mesh adaptation are more preferred to locally increase mesh densities in the regions of interest, thus saving the computer resources. The strategies of mesh adaptation can fall into two categories: h-method and r-method. The PI proposes to study several novel ideas in both methods and combine them to develop a more efficient, integrated, and flexible method for a large class of PDEs. More precisely, for r-method, the PI proposes a new energy using the concept of Optimal Delaunay Triangulation (ODT) and will develop related fast optimization methods and apply to the numerical solution of PDEs. For h-method, the PI will design and analyze multigrid methods, gradient recovery schemes, and refinement and coarsening algorithms based on a novel decomposition of bisection grids. Furthermore, these two methods will be naturally incorporated to result a more multilevel mesh adaptation strategy, in which h-method will be mainly used as a local smoother while the coarse mesh will be moved using the information from fine grids to severs as a coarse grid correction. The PI hopes to develop a more complete theoretical foundation and modern techniques for the combined use of adaptivity and multilevel solvers.The multilevel adaptive methods developed and studied in this work are expected to have a broader impact on the numerical solutions of a large class of practical problems. Special target applications for this work are the convection-dominated problems and numerical simulation of pattern formation. The convection-dominated convection diffusion problems are particularly important to several flow problems in the real applications, for example, automotive industry (flow in combustion engines), plating industry (electro-chemically reacting flows with mass transfer at the electrode boundaries), and aerospace (high Reynolds number flow) among many others. Pattern formation occurs in diverse physical, chemical, and biological systems, from Drosophila embryo to the large-scale structure of the universe. By developing improved multilevel numerical techniques to reduce the computer time required to solve the underlying equations, and at the same time producing more accurate solutions through the use of adaptive finite element methods, this project will provide powerful tools for the exploration of models in physics and biology. In addition, a fully integrated involvement in undergraduate and graduate computational mathematics education is an integral part of the project. By developing a MATLAB package (iFEM), the PI will be able to design a new project-oriented course on multilevel adaptive finite element methods.
该提案是关于科学和工程应用中产生的偏微分方程(PDE)的高级数值方法的研究。研究的主题是多层自适应有限元方法的发展,应用和分析。与均匀加密计算网格相比,通过网格自适应的自适应有限元方法更有利于局部增加感兴趣区域的网格密度,从而节省计算机资源。网格自适应的策略可以分为两类:h方法和r方法。PI建议研究这两种方法中的几个新想法,并将它们联合收割机结合起来,为一大类偏微分方程开发一种更有效、更集成、更灵活的方法。更确切地说,对于r-方法,PI使用最优Delaunay三角剖分(ODT)的概念提出了一种新的能量,并将开发相关的快速优化方法并应用于PDE的数值求解。对于h-方法,PI将设计和分析多重网格方法,梯度恢复方案,以及基于对分网格的新分解的细化和粗化算法。此外,这两种方法将自然地结合起来,从而产生一个更多级的网格自适应策略,其中h-方法将主要用作局部平滑,而粗网格将使用从细网格到服务器的信息作为粗网格校正。PI希望开发一个更完整的理论基础和现代技术相结合的自适应性和多级solvers.The多级自适应方法的开发和研究在这项工作中,预计将有更广泛的影响,一个大类的实际问题的数值解。这项工作的特殊目标应用是对流为主的问题和模式形成的数值模拟。对流主导的对流扩散问题对于真实的应用中的一些流动问题特别重要,例如,汽车工业(内燃机中的流动)、电镀工业(在电极边界处具有质量传递的电化学反应流动)和航空航天(高雷诺数流动)等。模式形成发生在不同的物理、化学和生物系统中,从果蝇胚胎到宇宙的大尺度结构。通过开发改进的多级数值技术,以减少求解基本方程所需的计算机时间,同时通过使用自适应有限元方法产生更精确的解,该项目将为物理和生物模型的探索提供强大的工具。 此外,在本科生和研究生计算数学教育的完全集成的参与是该项目的一个组成部分。通过开发MATLAB软件包(iFEM),PI将能够设计一门关于多级自适应有限元方法的新项目导向课程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Long Chen其他文献

Multiplicity in an optimised kinematic dynamo
优化的运动发电机中的多重性
Drift kinetic effects on plasma response to resonant magnetic perturbation for EU DEMO design
欧盟演示设计的共振磁扰动等离子体响应的漂移动力学效应
  • DOI:
    10.1088/1361-6587/acb012
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Lina Zhou;Yueqiang Liu;Hanqing Hu;Mattia Siccinio;Francesco Maviglia;Hartmut Zohm;Leonardo Pigatto;Yong Wang;Li Li;G Z Hao;Xu Yang;Hanyu Zhang;Ping Duan;Long Chen
  • 通讯作者:
    Long Chen
Kinetic and mechanistic investigations of thermal decomposition of methyl-substituted cycloalkyl radicals
甲基取代环烷基热分解的动力学和机理研究
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Long Chen;Zhifang Gao;Weina Wang;Fengyi Liu;Jian Lü;Wenliang Wang
  • 通讯作者:
    Wenliang Wang
A Social Media Study on the Associations of Flavored Electronic Cigarettes With Health Symptoms: Observational Study (Preprint)
关于调味电子烟与健康症状关联的社交媒体研究:观察性研究(预印本)
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Long Chen;Xinyi Lu;Jianbo Yuan;Joyce Luo;Jiebo Luo;Zidian Xie;Dongmei Li
  • 通讯作者:
    Dongmei Li
Nuclear receptor Nur77 protects against oxidative stress by maintaining mitochondrial homeostasis via regulating mitochondrial fission and mitophagy in smooth muscle cell
核受体 Nur77 通过调节平滑肌细胞中的线粒体裂变和线粒体自噬来维持线粒体稳态,从而防止氧化应激
  • DOI:
    10.1016/j.yjmcc.2022.05.007
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Na Geng;Taiwei Chen;Long Chen;Hengyuan Zhang;Lingyue Sun;Yuyan Lyu;Xinyu Che;Qingqing Xiao;Zhenyu Tao;Qin Shao
  • 通讯作者:
    Qin Shao

Long Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Long Chen', 18)}}的其他基金

Finite Element Complexes
有限元复合体
  • 批准号:
    2309785
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Collaborative proposal: Workshop on Numerical Modeling with Neural Networks, Learning, and Multilevel Finite Element Methods
合作提案:神经网络数值建模、学习和多级有限元方法研讨会
  • 批准号:
    2133096
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Fast Optimization Methods and Application to Data Science and Nonlinear Partial Differential Equations
快速优化方法及其在数据科学和非线性偏微分方程中的应用
  • 批准号:
    2012465
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Social and Economic Implications of Transport Sharing and Automation
交通共享和自动化的社会和经济影响
  • 批准号:
    ES/S001875/1
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
    Fellowship
Multigrid Methods for a Class of Saddle Point Problems
一类鞍点问题的多重网格方法
  • 批准号:
    1418934
  • 财政年份:
    2014
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Theory, Algorithm and Appliction for H(curl) and H(div) Problems
H(curl)和H(div)问题的理论、算法和应用
  • 批准号:
    1115961
  • 财政年份:
    2011
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似海外基金

A novel damage characterization technique based on adaptive deconvolution extraction algorithm of multivariate AE signals for accurate diagnosis of osteoarthritic knees
基于多变量 AE 信号自适应反卷积提取算法的新型损伤表征技术,用于准确诊断膝关节骨关节炎
  • 批准号:
    24K07389
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Adaptive AE Tomography technique for novel diagnosis of osteoarthritic knees by passive volumetric reconstruction algorithm
自适应AE断层扫描技术通过被动体积重建算法诊断膝关节骨关节炎
  • 批准号:
    21K03948
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Three-dimensional echocardiography surveillance using an automated adaptive analytics algorithm during chemothrapy for improving cardiovascular outcome
在化疗期间使用自动自适应分析算法进行三维超声心动图监测,以改善心血管结果
  • 批准号:
    18K08118
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
An Adaptive Algorithm-Based Approach to Treatment for Adolescent Depression
基于自适应算法的青少年抑郁症治疗方法
  • 批准号:
    10166940
  • 财政年份:
    2017
  • 资助金额:
    $ 15万
  • 项目类别:
The NEXTCENTURY Algorithm led Adaptive Learning Platform
NEXTCENTURY 算法主导的自适应学习平台
  • 批准号:
    103395
  • 财政年份:
    2017
  • 资助金额:
    $ 15万
  • 项目类别:
    Feasibility Studies
An Adaptive Algorithm-Based Approach to Treatment for Adolescent Depression
基于自适应算法的青少年抑郁症治疗方法
  • 批准号:
    9533719
  • 财政年份:
    2017
  • 资助金额:
    $ 15万
  • 项目类别:
Development of a 2D adaptive finite element inversion algorithm for the marine Differential Electrical Dipole method
海洋差分电偶极子法二维自适应有限元反演算法的开发
  • 批准号:
    389727048
  • 财政年份:
    2017
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grants
Adaptive Thresholds and Fast Parallel Algorithm for Multi-directional Switching Median Filter
多向切换中值滤波器的自适应阈值和快速并行算法
  • 批准号:
    16K00260
  • 财政年份:
    2016
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Self-adaptive Coevolutionary Algorithm Enabling Cross-disciplinary Optimization and its Application to Coded Aperture Design for Watermark Extraction
跨学科优化的自适应协同进化算法及其在水印提取编码孔径设计中的应用
  • 批准号:
    15H02758
  • 财政年份:
    2015
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Developing an Adaptive Synchronization Optimization Algorithm for Real-time Collaborative Works on the Web
为网络上的实时协作工作开发自适应同步优化算法
  • 批准号:
    15K00422
  • 财政年份:
    2015
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了