Finite Element Complexes
有限元复合体
基本信息
- 批准号:2309785
- 负责人:
- 金额:$ 40.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project focuses on enhancing our ability to solve complex mathematical problems that have practical applications in areas such as engineering and physics. The aim is to create a unified framework that will better understand and tackle these problems, using cutting-edge computational techniques. In addition to advancing scientific knowledge, the project has a strong emphasis on education and promoting diversity by training the next generation of computational mathematicians. By developing easy-to-use tools and sharing knowledge through various platforms, the project aims to benefit society at large, improving our understanding of complex systems and enabling the development of innovative solutions in multiple fields. The project will include training of at least two graduate students. The technical aspect of this project employs a powerful approach called Finite Element Exterior Calculus (FEEC), which has already proven effective in analyzing the stability of finite element discretizations and in revealing new finite elements for solving various partial differential equations (PDEs). The goal is to extend the range of FEEC to design finite element spaces for tensors and construct additional finite element complexes. The project will utilize the Bernstein-Gelfand-Gelfand (BGG) construction to systematically develop finite element complexes for various applications, such as Hessian complex, elasticity complex, and divdiv complex. Moreover, this project seeks to unify non-conforming finite element methods, weak Galerkin element methods, and virtual element methods using weak stability and distributional finite element complexes, thus expanding the finite element periodic table. Research topics include smooth finite element spaces for scalar functions, div-conforming face elements for tensors, finite element de Rham and Stokes complexes, discrete BGG construction, weak div and divdiv stability, and distributional finite element complexes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的重点是提高我们解决复杂数学问题的能力,这些问题在工程和物理等领域具有实际应用。其目的是创建一个统一的框架,使用尖端的计算技术更好地理解和解决这些问题。除了推进科学知识,该项目还非常重视教育,通过培训下一代计算数学家来促进多样性。通过开发易于使用的工具和通过各种平台分享知识,该项目旨在造福整个社会,提高我们对复杂系统的理解,并在多个领域开发创新解决方案。该项目将包括培训至少两名研究生。该项目的技术方面采用了一种强大的方法,称为有限元外演算(FEEC),它已经被证明是有效的,在分析有限元离散化的稳定性和揭示新的有限元求解各种偏微分方程(PDE)。我们的目标是扩大FEEC的范围,设计张量的有限元空间,并构建额外的有限元复合体。该项目将利用Bernstein-Gelfand-Gelfand(BGG)构造系统地开发各种应用的有限元复合体,如Hessian复合体,弹性复合体和divdiv复合体。此外,该项目旨在统一非协调有限元方法,弱伽辽金元方法,虚元方法使用弱稳定性和分布有限元复合体,从而扩展有限元周期表。研究课题包括标量函数的光滑有限元空间、张量的dv一致面元、有限元de Rham和Stokes复形、离散BGG构造、弱div和divdiv稳定性以及分布有限元复形。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估而被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Long Chen其他文献
Multiplicity in an optimised kinematic dynamo
优化的运动发电机中的多重性
- DOI:
10.1080/03091929.2022.2098284 - 发表时间:
2022 - 期刊:
- 影响因子:1.3
- 作者:
Long Chen - 通讯作者:
Long Chen
Drift kinetic effects on plasma response to resonant magnetic perturbation for EU DEMO design
欧盟演示设计的共振磁扰动等离子体响应的漂移动力学效应
- DOI:
10.1088/1361-6587/acb012 - 发表时间:
2023-01 - 期刊:
- 影响因子:2.2
- 作者:
Lina Zhou;Yueqiang Liu;Hanqing Hu;Mattia Siccinio;Francesco Maviglia;Hartmut Zohm;Leonardo Pigatto;Yong Wang;Li Li;G Z Hao;Xu Yang;Hanyu Zhang;Ping Duan;Long Chen - 通讯作者:
Long Chen
Kinetic and mechanistic investigations of thermal decomposition of methyl-substituted cycloalkyl radicals
甲基取代环烷基热分解的动力学和机理研究
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:3.9
- 作者:
Long Chen;Zhifang Gao;Weina Wang;Fengyi Liu;Jian Lü;Wenliang Wang - 通讯作者:
Wenliang Wang
A Social Media Study on the Associations of Flavored Electronic Cigarettes With Health Symptoms: Observational Study (Preprint)
关于调味电子烟与健康症状关联的社交媒体研究:观察性研究(预印本)
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Long Chen;Xinyi Lu;Jianbo Yuan;Joyce Luo;Jiebo Luo;Zidian Xie;Dongmei Li - 通讯作者:
Dongmei Li
Nuclear receptor Nur77 protects against oxidative stress by maintaining mitochondrial homeostasis via regulating mitochondrial fission and mitophagy in smooth muscle cell
核受体 Nur77 通过调节平滑肌细胞中的线粒体裂变和线粒体自噬来维持线粒体稳态,从而防止氧化应激
- DOI:
10.1016/j.yjmcc.2022.05.007 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Na Geng;Taiwei Chen;Long Chen;Hengyuan Zhang;Lingyue Sun;Yuyan Lyu;Xinyu Che;Qingqing Xiao;Zhenyu Tao;Qin Shao - 通讯作者:
Qin Shao
Long Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Long Chen', 18)}}的其他基金
Collaborative proposal: Workshop on Numerical Modeling with Neural Networks, Learning, and Multilevel Finite Element Methods
合作提案:神经网络数值建模、学习和多级有限元方法研讨会
- 批准号:
2133096 - 财政年份:2021
- 资助金额:
$ 40.13万 - 项目类别:
Standard Grant
Fast Optimization Methods and Application to Data Science and Nonlinear Partial Differential Equations
快速优化方法及其在数据科学和非线性偏微分方程中的应用
- 批准号:
2012465 - 财政年份:2020
- 资助金额:
$ 40.13万 - 项目类别:
Standard Grant
Social and Economic Implications of Transport Sharing and Automation
交通共享和自动化的社会和经济影响
- 批准号:
ES/S001875/1 - 财政年份:2018
- 资助金额:
$ 40.13万 - 项目类别:
Fellowship
Multigrid Methods for a Class of Saddle Point Problems
一类鞍点问题的多重网格方法
- 批准号:
1418934 - 财政年份:2014
- 资助金额:
$ 40.13万 - 项目类别:
Continuing Grant
Theory, Algorithm and Appliction for H(curl) and H(div) Problems
H(curl)和H(div)问题的理论、算法和应用
- 批准号:
1115961 - 财政年份:2011
- 资助金额:
$ 40.13万 - 项目类别:
Standard Grant
Theory and Algorithm of Adaptive Methods for Numerical Methods
数值方法自适应方法理论与算法
- 批准号:
0811272 - 财政年份:2008
- 资助金额:
$ 40.13万 - 项目类别:
Standard Grant
相似国自然基金
毛竹MLE(mariner-like element)转座酶催化机理研究
- 批准号:LZ19C160001
- 批准年份:2018
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Development of Optoelectronic Properties of Conjugated Polymers Consisting of Typical Element Complexes Based on Even-Electrons/Odd-Atoms Systems
基于偶电子/奇原子体系的典型元素配合物共轭聚合物光电性能研究
- 批准号:
23K13793 - 财政年份:2023
- 资助金额:
$ 40.13万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: US GEOTRACES GP-17-ANT: Molecular speciation of trace element-ligand complexes in the Southern Ocean and Antarctic shelf
合作研究:美国 GEOTRACES GP-17-ANT:南大洋和南极陆架微量元素-配体复合物的分子形态
- 批准号:
2410011 - 财政年份:2023
- 资助金额:
$ 40.13万 - 项目类别:
Continuing Grant
Collaborative Research: US GEOTRACES GP-17-OCE: Molecular speciation of trace element-ligand complexes in the South Pacific Ocean
合作研究:US GEOTRACES GP-17-OCE:南太平洋微量元素-配体复合物的分子形态
- 批准号:
2422713 - 财政年份:2023
- 资助金额:
$ 40.13万 - 项目类别:
Standard Grant
Collaborative Research: US GEOTRACES GP-17-ANT: Molecular speciation of trace element-ligand complexes in the Southern Ocean and Antarctic shelf
合作研究:US GEOTRACES GP-17-ANT:南大洋和南极陆架微量元素-配体复合物的分子形态
- 批准号:
2048510 - 财政年份:2021
- 资助金额:
$ 40.13万 - 项目类别:
Continuing Grant
Development of Photo-functional Materials Based on Interactions between Chelete and Nonchelate Ligands of Typical Element Complexes
基于典型元素配合物的螯合配体和非螯合配体之间的相互作用开发光功能材料
- 批准号:
21K14673 - 财政年份:2021
- 资助金额:
$ 40.13万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: US GEOTRACES GP-17-OCE: Molecular speciation of trace element-ligand complexes in the South Pacific Ocean
合作研究:US GEOTRACES GP-17-OCE:南太平洋微量元素-配体复合物的分子形态
- 批准号:
2048887 - 财政年份:2021
- 资助金额:
$ 40.13万 - 项目类别:
Standard Grant
Collaborative Research: US GEOTRACES GP-17-ANT: Molecular speciation of trace element-ligand complexes in the Southern Ocean and Antarctic shelf
合作研究:US GEOTRACES GP-17-ANT:南大洋和南极陆架微量元素-配体复合物的分子形态
- 批准号:
2049280 - 财政年份:2021
- 资助金额:
$ 40.13万 - 项目类别:
Continuing Grant
Collaborative Research: US GEOTRACES GP-17-OCE: Molecular speciation of trace element-ligand complexes in the South Pacific Ocean
合作研究:US GEOTRACES GP-17-OCE:南太平洋微量元素-配体复合物的分子形态
- 批准号:
2045223 - 财政年份:2021
- 资助金额:
$ 40.13万 - 项目类别:
Standard Grant
Relativistic effect on ligand field splitting of metal complexes: a fundamental theory of heavy element chemistry
金属配合物配体场分裂的相对论效应:重元素化学的基本理论
- 批准号:
21K14643 - 财政年份:2021
- 资助金额:
$ 40.13万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Gas element-vacancy complexes investigated by electron momentum distribution analysis using a combination of positron annihilation and first-principles calculations
结合正电子湮灭和第一性原理计算,通过电子动量分布分析研究气体元素-空位复合物
- 批准号:
20K03902 - 财政年份:2020
- 资助金额:
$ 40.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)