Fast Optimization Methods and Application to Data Science and Nonlinear Partial Differential Equations

快速优化方法及其在数据科学和非线性偏微分方程中的应用

基本信息

  • 批准号:
    2012465
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

This projects incorporates several recent developments in optimization methods and nonlinear multigrid methods to provide a new technique to improve the computational efficiency of practical applications. Successful integration of our fast optimization methods will open a wide new area of applications ranging from numerical solution of partial differential equations to optimization methods for large-scale machine learning. Social media such as Facebook and GitHub will be used to disseminate basics on applied and computational mathematics and promote the research to a wider audience in both academia and industry, as well as increase the public awareness of how computational mathematics help the advancement of research in other physical and data sciences. This project will provide training opportunities for graduate students.The project focuses on a particular nonlinear multigrid method, the fast subspace descent (FASD) method, for solving optimization problems arising from various applications such as numerical solution of partial differential equations and data science problems. For example, the nonlinear multigrid methods to be studied can address the challenging problems in engineering applications including gradient flow in phase field models, Poisson-Boltzmann equation in math biology, and convex composite optimization problems in data science. Acceleration has been one of the most productive ideas in modern optimization theory. This framework brings more insight and mathematical tools for the design and analysis of old and new optimization methods, especially the accelerated gradient descent methods. Another important aspect of this project will be the rigorous theoretical foundation for a large class of optimization methods.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目结合了优化方法和非线性多重网格方法的最新进展,为提高实际应用的计算效率提供了一种新技术。我们的快速优化方法的成功集成将开辟一个广阔的新应用领域,从偏微分方程的数值求解到大规模机器学习的优化方法。 Facebook 和 GitHub 等社交媒体将用于传播应用和计算数学的基础知识,向学术界和工业界更广泛的受众推广研究,并提高公众对计算数学如何帮助其他物理和数据科学研究的进步的认识。该项目将为研究生提供培训机会。该项目重点研究一种特殊的非线性多重网格方法,即快速子空间下降(FASD)方法,用于解决各种应用中产生的优化问题,例如偏微分方程的数值求解和数据科学问题。例如,要研究的非线性多重网格方法可以解决工程应用中的挑战性问题,包括相场模型中的梯度流、数学生物学中的泊松-玻尔兹曼方程以及数据科学中的凸复合优化问题。加速一直是现代优化理论中最富有成效的思想之一。该框架为新旧优化方法(尤其是加速梯度下降方法)的设计和分析带来了更多的见解和数学工具。该项目的另一个重要方面是为一大批优化方法提供严格的理论基础。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Learn an Index Operator by CNN for Solving Diffusive Optical Tomography: A Deep Direct Sampling Method
  • DOI:
    10.1007/s10915-023-02115-7
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Ruchi Guo;Jiahua Jiang;Yi Li
  • 通讯作者:
    Ruchi Guo;Jiahua Jiang;Yi Li
Solving Three-Dimensional Interface Problems with Immersed Finite Elements: A-Priori Error Analysis
  • DOI:
    10.1016/j.jcp.2021.110445
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ruchi Guo;Xu Zhang
  • 通讯作者:
    Ruchi Guo;Xu Zhang
Construct Deep Neural Networks Based on Direct Sampling Methods for Solving Electrical Impedance Tomography
  • DOI:
    10.1137/20m1367350
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ruchi Guo;Jiahua Jiang
  • 通讯作者:
    Ruchi Guo;Jiahua Jiang
Finite Elements for div- and divdiv-Conforming Symmetric Tensors in Arbitrary Dimension
  • DOI:
    10.1137/21m1433708
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Long Chen;Xuehai Huang
  • 通讯作者:
    Long Chen;Xuehai Huang
FMMformer: Efficient and Flexible Transformer via Decomposed Near-field and Far-field Attention
  • DOI:
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Nguyen;Vai Suliafu;S. Osher;Long Chen;Bao Wang
  • 通讯作者:
    T. Nguyen;Vai Suliafu;S. Osher;Long Chen;Bao Wang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Long Chen其他文献

Multiplicity in an optimised kinematic dynamo
优化的运动发电机中的多重性
Drift kinetic effects on plasma response to resonant magnetic perturbation for EU DEMO design
欧盟演示设计的共振磁扰动等离子体响应的漂移动力学效应
  • DOI:
    10.1088/1361-6587/acb012
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Lina Zhou;Yueqiang Liu;Hanqing Hu;Mattia Siccinio;Francesco Maviglia;Hartmut Zohm;Leonardo Pigatto;Yong Wang;Li Li;G Z Hao;Xu Yang;Hanyu Zhang;Ping Duan;Long Chen
  • 通讯作者:
    Long Chen
Kinetic and mechanistic investigations of thermal decomposition of methyl-substituted cycloalkyl radicals
甲基取代环烷基热分解的动力学和机理研究
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Long Chen;Zhifang Gao;Weina Wang;Fengyi Liu;Jian Lü;Wenliang Wang
  • 通讯作者:
    Wenliang Wang
A Social Media Study on the Associations of Flavored Electronic Cigarettes With Health Symptoms: Observational Study (Preprint)
关于调味电子烟与健康症状关联的社交媒体研究:观察性研究(预印本)
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Long Chen;Xinyi Lu;Jianbo Yuan;Joyce Luo;Jiebo Luo;Zidian Xie;Dongmei Li
  • 通讯作者:
    Dongmei Li
Nuclear receptor Nur77 protects against oxidative stress by maintaining mitochondrial homeostasis via regulating mitochondrial fission and mitophagy in smooth muscle cell
核受体 Nur77 通过调节平滑肌细胞中的线粒体裂变和线粒体自噬来维持线粒体稳态,从而防止氧化应激
  • DOI:
    10.1016/j.yjmcc.2022.05.007
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Na Geng;Taiwei Chen;Long Chen;Hengyuan Zhang;Lingyue Sun;Yuyan Lyu;Xinyu Che;Qingqing Xiao;Zhenyu Tao;Qin Shao
  • 通讯作者:
    Qin Shao

Long Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Long Chen', 18)}}的其他基金

Finite Element Complexes
有限元复合体
  • 批准号:
    2309785
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative proposal: Workshop on Numerical Modeling with Neural Networks, Learning, and Multilevel Finite Element Methods
合作提案:神经网络数值建模、学习和多级有限元方法研讨会
  • 批准号:
    2133096
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Social and Economic Implications of Transport Sharing and Automation
交通共享和自动化的社会和经济影响
  • 批准号:
    ES/S001875/1
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Fellowship
Multigrid Methods for a Class of Saddle Point Problems
一类鞍点问题的多重网格方法
  • 批准号:
    1418934
  • 财政年份:
    2014
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Theory, Algorithm and Appliction for H(curl) and H(div) Problems
H(curl)和H(div)问题的理论、算法和应用
  • 批准号:
    1115961
  • 财政年份:
    2011
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Theory and Algorithm of Adaptive Methods for Numerical Methods
数值方法自适应方法理论与算法
  • 批准号:
    0811272
  • 财政年份:
    2008
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
  • 批准号:
    70601028
  • 批准年份:
    2006
  • 资助金额:
    7.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Novel Parallelization Frameworks for Large-Scale Network Optimization with Combinatorial Requirements: Solution Methods and Applications
职业:具有组合要求的大规模网络优化的新型并行化框架:解决方法和应用
  • 批准号:
    2338641
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
SHF: Small: Methods and Architectures for Optimization and Hardware Acceleration of Spiking Neural Networks
SHF:小型:尖峰神经网络优化和硬件加速的方法和架构
  • 批准号:
    2310170
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CAREER: Advancing Efficient Global Optimization of Extremely Expensive Functions under Uncertainty using Structure-Exploiting Bayesian Methods
职业:使用结构利用贝叶斯方法在不确定性下推进极其昂贵的函数的高效全局优化
  • 批准号:
    2237616
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Prediction of molten wall turbulence and defects in the solidified wall by DNS and PFM and optimization of control methods
利用DNS和PFM预测熔壁湍流和凝固壁缺陷并优化控制方法
  • 批准号:
    23K03655
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Acceleration, Complexity and Implementation of Active Set Methods for Large-scale Sparse Nonlinear Optimization
大规模稀疏非线性优化的活跃集方法的加速、复杂性和实现
  • 批准号:
    2309549
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
AF: Small: Low-Degree Methods for Optimization in Random Structures. Power and Limitations
AF:小:随机结构优化的低度方法。
  • 批准号:
    2233897
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CAREER: Designing Robust Cyber-Physical Systems: Logics, Automata, Optimization, and Heuristic Methods
职业:设计鲁棒的网络物理系统:逻辑、自动机、优化和启发式方法
  • 批准号:
    2240126
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Advanced Optimization Methods for The Design of Aluminium Based Battery Enclosures for Electric Vehicles
电动汽车铝基电池外壳设计的高级优化方法
  • 批准号:
    2891974
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Studentship
CAREER: Ensemble Kalman Methods and Bayesian Optimization in Inverse Problems and Data Assimilation
职业:反问题和数据同化中的集成卡尔曼方法和贝叶斯优化
  • 批准号:
    2237628
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Developing subspace methods for constrained optimization problems and their application to machine learning
开发约束优化问题的子空间方法及其在机器学习中的应用
  • 批准号:
    23H03351
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了