Multigrid Methods for a Class of Saddle Point Problems

一类鞍点问题的多重网格方法

基本信息

  • 批准号:
    1418934
  • 负责人:
  • 金额:
    $ 20.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-15 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

The fast multigrid methods developed and studied in this work are expected to have a broader impact on the numerical solutions of a large class of practical problems. Important applications include: vector (Hodge) Laplacian, Maxwell equations, Stokes equations, Oseen and Navier-Stokes equations, and Magnetohydrodynamics (MHD) etc. MHD, in particular, has important applications in the development of fusion technology and casting processes. In these applications, since no experimentation is nowadays possible, the numerical simulation of the corresponding partial differential equations is indispensable. These simulations are very challenging, requiring large computational resources. The multigrid solvers developed in this project offer the potential for increasingly accurate models to be solved. In addition, our improvements in algorithm developments will have impact on many other areas, such as image processing, and computer graphics.This project is divided into two parts: algorithmic development and theoretical analysis. For the algorithmic development, multigrid solvers will be developed for mixed finite element discretization based on Finite Element Exterior Calculus (FEEC). In our study, effective smoothers, which are the key of multigrid methods, will be developed by using existing effective preconditioners or splitting schemes. One such example is a distributive smoother proposed in this project which is highly related to the well-known projection methods used in computational fluid dynamic. In addition to the algorithmic development, a more completed convergence theory of multigrid methods for saddle point problems will be developed. This theory aims to relax the strong regularity assumption in existing work. Consequently our theory can be applied to more realistic problems especially for solutions with singularities. Our theoretical investigation will also provide insight for the algorithmic development, e.g., the construction of approximated distributive smoothers and Schwarz smoothers, and optimal choice of relaxation parameters used in several smoothers.
本文所开发和研究的快速多重网格法有望对一大类实际问题的数值解产生更广泛的影响。重要的应用包括:矢量(Hodge)拉普拉斯方程、麦克斯韦方程、Stokes方程、Osee和Navier-Stokes方程以及磁流体力学(MHD)等。尤其是磁流体力学,在熔化技术和铸造工艺的发展中具有重要的应用。在这些应用中,由于目前还不可能进行实验,相应的偏微分方程组的数值模拟是必不可少的。这些模拟非常具有挑战性,需要大量的计算资源。在这个项目中开发的多重网格解算器为解决越来越精确的模型提供了可能性。此外,我们在算法开发方面的改进将对许多其他领域产生影响,如图像处理和计算机图形学。本项目分为算法开发和理论分析两部分。在算法开发方面,将开发基于有限元外积分(FEEC)的混合有限元离散的多重网格求解器。在我们的研究中,有效的光滑器是多重网格方法的关键,我们将利用现有的有效预条件或分裂格式来开发有效的光滑器。一个这样的例子是本项目中提出的分布式光滑器,它与计算流体力学中使用的众所周知的投影方法高度相关。除了算法的发展外,还将发展更完整的鞍点问题多重网格法的收敛理论。该理论旨在放松现有工作中的强正则性假设。因此,我们的理论可以应用于更现实的问题,特别是具有奇异性的解。我们的理论研究也将为算法的发展提供启示,例如,构造近似分布光滑器和Schwarz光滑器,以及在几种光滑器中使用的松弛参数的最佳选择。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Long Chen其他文献

Multiplicity in an optimised kinematic dynamo
优化的运动发电机中的多重性
Drift kinetic effects on plasma response to resonant magnetic perturbation for EU DEMO design
欧盟演示设计的共振磁扰动等离子体响应的漂移动力学效应
  • DOI:
    10.1088/1361-6587/acb012
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Lina Zhou;Yueqiang Liu;Hanqing Hu;Mattia Siccinio;Francesco Maviglia;Hartmut Zohm;Leonardo Pigatto;Yong Wang;Li Li;G Z Hao;Xu Yang;Hanyu Zhang;Ping Duan;Long Chen
  • 通讯作者:
    Long Chen
Kinetic and mechanistic investigations of thermal decomposition of methyl-substituted cycloalkyl radicals
甲基取代环烷基热分解的动力学和机理研究
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Long Chen;Zhifang Gao;Weina Wang;Fengyi Liu;Jian Lü;Wenliang Wang
  • 通讯作者:
    Wenliang Wang
A Social Media Study on the Associations of Flavored Electronic Cigarettes With Health Symptoms: Observational Study (Preprint)
关于调味电子烟与健康症状关联的社交媒体研究:观察性研究(预印本)
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Long Chen;Xinyi Lu;Jianbo Yuan;Joyce Luo;Jiebo Luo;Zidian Xie;Dongmei Li
  • 通讯作者:
    Dongmei Li
Nuclear receptor Nur77 protects against oxidative stress by maintaining mitochondrial homeostasis via regulating mitochondrial fission and mitophagy in smooth muscle cell
核受体 Nur77 通过调节平滑肌细胞中的线粒体裂变和线粒体自噬来维持线粒体稳态,从而防止氧化应激
  • DOI:
    10.1016/j.yjmcc.2022.05.007
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Na Geng;Taiwei Chen;Long Chen;Hengyuan Zhang;Lingyue Sun;Yuyan Lyu;Xinyu Che;Qingqing Xiao;Zhenyu Tao;Qin Shao
  • 通讯作者:
    Qin Shao

Long Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Long Chen', 18)}}的其他基金

Finite Element Complexes
有限元复合体
  • 批准号:
    2309785
  • 财政年份:
    2023
  • 资助金额:
    $ 20.5万
  • 项目类别:
    Continuing Grant
Collaborative proposal: Workshop on Numerical Modeling with Neural Networks, Learning, and Multilevel Finite Element Methods
合作提案:神经网络数值建模、学习和多级有限元方法研讨会
  • 批准号:
    2133096
  • 财政年份:
    2021
  • 资助金额:
    $ 20.5万
  • 项目类别:
    Standard Grant
Fast Optimization Methods and Application to Data Science and Nonlinear Partial Differential Equations
快速优化方法及其在数据科学和非线性偏微分方程中的应用
  • 批准号:
    2012465
  • 财政年份:
    2020
  • 资助金额:
    $ 20.5万
  • 项目类别:
    Standard Grant
Social and Economic Implications of Transport Sharing and Automation
交通共享和自动化的社会和经济影响
  • 批准号:
    ES/S001875/1
  • 财政年份:
    2018
  • 资助金额:
    $ 20.5万
  • 项目类别:
    Fellowship
Theory, Algorithm and Appliction for H(curl) and H(div) Problems
H(curl)和H(div)问题的理论、算法和应用
  • 批准号:
    1115961
  • 财政年份:
    2011
  • 资助金额:
    $ 20.5万
  • 项目类别:
    Standard Grant
Theory and Algorithm of Adaptive Methods for Numerical Methods
数值方法自适应方法理论与算法
  • 批准号:
    0811272
  • 财政年份:
    2008
  • 资助金额:
    $ 20.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Developing a New Class of Arbitrary-Resolution Numerical Methods with Applications to Geoscience
开发一类应用于地球科学的新型任意分辨率数值方法
  • 批准号:
    559297-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 20.5万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Bayesian Methods for Latent Class Models
潜在类模型的贝叶斯方法
  • 批准号:
    RGPIN-2019-06713
  • 财政年份:
    2022
  • 资助金额:
    $ 20.5万
  • 项目类别:
    Discovery Grants Program - Individual
Developing a New Class of Arbitrary-Resolution Numerical Methods with Applications to Geoscience
开发一类应用于地球科学的新型任意分辨率数值方法
  • 批准号:
    559297-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 20.5万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Bayesian Methods for Latent Class Models
潜在类模型的贝叶斯方法
  • 批准号:
    RGPIN-2019-06713
  • 财政年份:
    2021
  • 资助金额:
    $ 20.5万
  • 项目类别:
    Discovery Grants Program - Individual
SHF: Medium: Formal Methods as a First-Class Citizen of a Mainstream Compiler Framework
SHF:Medium:作为主流编译器框架的一等公民的形式方法
  • 批准号:
    1955688
  • 财政年份:
    2020
  • 资助金额:
    $ 20.5万
  • 项目类别:
    Continuing Grant
Bayesian Methods for Latent Class Models
潜在类模型的贝叶斯方法
  • 批准号:
    RGPIN-2019-06713
  • 财政年份:
    2020
  • 资助金额:
    $ 20.5万
  • 项目类别:
    Discovery Grants Program - Individual
Bayesian Methods for Latent Class Models
潜在类模型的贝叶斯方法
  • 批准号:
    RGPIN-2019-06713
  • 财政年份:
    2019
  • 资助金额:
    $ 20.5万
  • 项目类别:
    Discovery Grants Program - Individual
Bayesian Methods for Latent Class Models
潜在类模型的贝叶斯方法
  • 批准号:
    RGPIN-2018-06193
  • 财政年份:
    2018
  • 资助金额:
    $ 20.5万
  • 项目类别:
    Discovery Grants Program - Individual
Exploration of methods of measurement and analyses of theory-based social class classification for health research in Japan
日本健康研究基于理论的社会阶层分类测量方法探索
  • 批准号:
    18K19699
  • 财政年份:
    2018
  • 资助金额:
    $ 20.5万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Classification methods for providing personalised and class decisions
提供个性化和类别决策的分类方法
  • 批准号:
    DP180101192
  • 财政年份:
    2018
  • 资助金额:
    $ 20.5万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了