Multigrid Methods for a Class of Saddle Point Problems
一类鞍点问题的多重网格方法
基本信息
- 批准号:1418934
- 负责人:
- 金额:$ 20.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-15 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The fast multigrid methods developed and studied in this work are expected to have a broader impact on the numerical solutions of a large class of practical problems. Important applications include: vector (Hodge) Laplacian, Maxwell equations, Stokes equations, Oseen and Navier-Stokes equations, and Magnetohydrodynamics (MHD) etc. MHD, in particular, has important applications in the development of fusion technology and casting processes. In these applications, since no experimentation is nowadays possible, the numerical simulation of the corresponding partial differential equations is indispensable. These simulations are very challenging, requiring large computational resources. The multigrid solvers developed in this project offer the potential for increasingly accurate models to be solved. In addition, our improvements in algorithm developments will have impact on many other areas, such as image processing, and computer graphics.This project is divided into two parts: algorithmic development and theoretical analysis. For the algorithmic development, multigrid solvers will be developed for mixed finite element discretization based on Finite Element Exterior Calculus (FEEC). In our study, effective smoothers, which are the key of multigrid methods, will be developed by using existing effective preconditioners or splitting schemes. One such example is a distributive smoother proposed in this project which is highly related to the well-known projection methods used in computational fluid dynamic. In addition to the algorithmic development, a more completed convergence theory of multigrid methods for saddle point problems will be developed. This theory aims to relax the strong regularity assumption in existing work. Consequently our theory can be applied to more realistic problems especially for solutions with singularities. Our theoretical investigation will also provide insight for the algorithmic development, e.g., the construction of approximated distributive smoothers and Schwarz smoothers, and optimal choice of relaxation parameters used in several smoothers.
在这项工作中开发和研究的快速多重网格方法有望对大量实际问题的数值解产生更广泛的影响。重要的应用包括:矢量(Hodge)拉普拉斯方程、Maxwell方程、Stokes方程、Oseen方程和Navier-Stokes方程、磁流体动力学(MHD)等。特别是MHD,在熔合技术和铸造工艺的发展中具有重要的应用。在这些应用中,由于目前不可能进行实验,因此对相应的偏微分方程进行数值模拟是必不可少的。这些模拟非常具有挑战性,需要大量的计算资源。在这个项目中开发的多网格求解器为求解越来越精确的模型提供了潜力。此外,我们在算法开发方面的改进将对许多其他领域产生影响,例如图像处理和计算机图形学。本课题分为算法开发和理论分析两部分。在算法开发方面,将开发基于有限元外部演算(FEEC)的混合有限元离散化多网格求解器。在我们的研究中,有效的平滑器是多网格方法的关键,将利用现有的有效的预处理器或分割方案来开发。其中一个例子是本项目提出的分布平滑器,它与计算流体动力学中使用的众所周知的投影方法高度相关。除了算法的发展,鞍点问题的多网格方法的更完整的收敛理论将被发展。该理论旨在打破现有工作中的强规律性假设。因此,我们的理论可以应用于更实际的问题,特别是具有奇点的解。我们的理论研究也将为算法的发展提供见解,例如,近似分布平滑和Schwarz平滑的构造,以及在几个平滑中使用的松弛参数的最佳选择。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Long Chen其他文献
Formation of Gas-Phase Allyl Radicals from Glycerol on Rutile TiO2(110)
金红石 TiO2(110) 上甘油形成气相烯丙基自由基
- DOI:
10.1021/acs.jpcc.1c00991 - 发表时间:
2021 - 期刊:
- 影响因子:3.7
- 作者:
Long Chen;R. S. Smith;B. D. Kay;Z. Dohnálek - 通讯作者:
Z. Dohnálek
Time Series Prediction with Input Noise Based on the ESN and the EM and lts Industrial Applications
基于ESN和EM的输入噪声时间序列预测及其工业应用
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:8.5
- 作者:
Ying Liu;Long Chen;Yunchong Li;Jun Zhao;Wei Wang - 通讯作者:
Wei Wang
N-(7-Cyano-6-(4-fluoro-3-(2-(3-(trifluoromethyl)phenyl)acetamido)phenoxy)benzo[ d]thiazol-2-yl)cyclopropanecarboxamide (TAK-632) Analogues as Novel Necroptosis Inhibitors by Targeting Receptor-Interacting Protein Kinase 3 (RIPK3): Synthesis, Structure-Act
N-(7-氰基-6-(4-氟-3-(2-(3-(三氟甲基)苯基)乙酰胺基)苯氧基)苯并[d]噻唑-2-基)环丙烷甲酰胺(TAK-632)新型类似物
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:7.3
- 作者:
Hao Zhang;Lijuan Xu;Xia Qin;Xiaofei Chen;Hui Cong;Longmiao Hu;Long Chen;Zhenyuan Miao;Wannian Zhang;Zhenyu Cai;Chunlin Zhuang - 通讯作者:
Chunlin Zhuang
Visible light-driven oxidation of arsenite, sulfite and thiazine dyes: A new strategy for using waste to treat waste
亚砷酸盐、亚硫酸盐和噻嗪染料的可见光驱动氧化:利用废物处理废物的新策略
- DOI:
10.1016/j.jclepro.2020.124374 - 发表时间:
2021-01 - 期刊:
- 影响因子:11.1
- 作者:
Tao Luo;Hao Wang;Long Chen;Jinjun Li;Feng Wu;Danna Zhou - 通讯作者:
Danna Zhou
Expression of transferrin in hematoma brain tissue at different stages after intra cerebral hemorrhage in rats.
大鼠脑出血后不同阶段血肿脑组织中转铁蛋白的表达
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:3.1
- 作者:
Long Chen;Xue;Jian Zhu;Hui;Yan;You;Jian Wang;Wen - 通讯作者:
Wen
Long Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Long Chen', 18)}}的其他基金
Collaborative proposal: Workshop on Numerical Modeling with Neural Networks, Learning, and Multilevel Finite Element Methods
合作提案:神经网络数值建模、学习和多级有限元方法研讨会
- 批准号:
2133096 - 财政年份:2021
- 资助金额:
$ 20.5万 - 项目类别:
Standard Grant
Fast Optimization Methods and Application to Data Science and Nonlinear Partial Differential Equations
快速优化方法及其在数据科学和非线性偏微分方程中的应用
- 批准号:
2012465 - 财政年份:2020
- 资助金额:
$ 20.5万 - 项目类别:
Standard Grant
Social and Economic Implications of Transport Sharing and Automation
交通共享和自动化的社会和经济影响
- 批准号:
ES/S001875/1 - 财政年份:2018
- 资助金额:
$ 20.5万 - 项目类别:
Fellowship
Theory, Algorithm and Appliction for H(curl) and H(div) Problems
H(curl)和H(div)问题的理论、算法和应用
- 批准号:
1115961 - 财政年份:2011
- 资助金额:
$ 20.5万 - 项目类别:
Standard Grant
Theory and Algorithm of Adaptive Methods for Numerical Methods
数值方法自适应方法理论与算法
- 批准号:
0811272 - 财政年份:2008
- 资助金额:
$ 20.5万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Developing a New Class of Arbitrary-Resolution Numerical Methods with Applications to Geoscience
开发一类应用于地球科学的新型任意分辨率数值方法
- 批准号:
559297-2021 - 财政年份:2022
- 资助金额:
$ 20.5万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Bayesian Methods for Latent Class Models
潜在类模型的贝叶斯方法
- 批准号:
RGPIN-2019-06713 - 财政年份:2022
- 资助金额:
$ 20.5万 - 项目类别:
Discovery Grants Program - Individual
Bayesian Methods for Latent Class Models
潜在类模型的贝叶斯方法
- 批准号:
RGPIN-2019-06713 - 财政年份:2021
- 资助金额:
$ 20.5万 - 项目类别:
Discovery Grants Program - Individual
Developing a New Class of Arbitrary-Resolution Numerical Methods with Applications to Geoscience
开发一类应用于地球科学的新型任意分辨率数值方法
- 批准号:
559297-2021 - 财政年份:2021
- 资助金额:
$ 20.5万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
SHF: Medium: Formal Methods as a First-Class Citizen of a Mainstream Compiler Framework
SHF:Medium:作为主流编译器框架的一等公民的形式方法
- 批准号:
1955688 - 财政年份:2020
- 资助金额:
$ 20.5万 - 项目类别:
Continuing Grant
Bayesian Methods for Latent Class Models
潜在类模型的贝叶斯方法
- 批准号:
RGPIN-2019-06713 - 财政年份:2020
- 资助金额:
$ 20.5万 - 项目类别:
Discovery Grants Program - Individual
Bayesian Methods for Latent Class Models
潜在类模型的贝叶斯方法
- 批准号:
RGPIN-2019-06713 - 财政年份:2019
- 资助金额:
$ 20.5万 - 项目类别:
Discovery Grants Program - Individual
Bayesian Methods for Latent Class Models
潜在类模型的贝叶斯方法
- 批准号:
RGPIN-2018-06193 - 财政年份:2018
- 资助金额:
$ 20.5万 - 项目类别:
Discovery Grants Program - Individual
Exploration of methods of measurement and analyses of theory-based social class classification for health research in Japan
日本健康研究基于理论的社会阶层分类测量方法探索
- 批准号:
18K19699 - 财政年份:2018
- 资助金额:
$ 20.5万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Classification methods for providing personalised and class decisions
提供个性化和类别决策的分类方法
- 批准号:
DP180101192 - 财政年份:2018
- 资助金额:
$ 20.5万 - 项目类别:
Discovery Projects














{{item.name}}会员




