EMT/MISC Nanogrid Implementation of

EMT/MISC 纳米电网实施

基本信息

  • 批准号:
    0829947
  • 负责人:
  • 金额:
    $ 29.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-01 至 2012-02-29
  • 项目状态:
    已结题

项目摘要

NSF 08-517 - Emerging Models and Technologies for Computation (EMT)EMT/MISC Nanogrid Implementation ofMassively Parallel AlgorithmsPI: Dan Hammerstrom, PSU; Co-PI: Richard Granger, Dartmouth;Co-PI: Konstantin Likharev, SUNY Stony BrookAbstractOur goal is to investigate the use of radically new implementation technology to enhance Intelligent Computing (IC) with new algorithms and new architectural and design techniques. We are focusing this work on recognition problems in computer vision. The algorithms we are studying have their origin in neuroscience, but they are significant abstractions of those algorithms, with the goal of retaining the essence of the computation while dropping many of the biological details. The 1st assumption is that these algorithms constitute a promising approach to achieving improved levels of IC. The 2nd assumption is that scaling to very large networks is a necessary requirement of intelligent computing, and the algorithms we are using do scale. The 3rd assumption is that CMOS will never give us the algorithm scaling we need at a reasonable cost/performance for scaled implementations of these algorithms. Thus we need to move to a far denser medium. Our 4th assumption then is that hybrid CMOS / nanogrids (CMOL)CMOL is the most promising implementation technology on the horizon.Consequently the goal of the research proposed here is to implement massively parallel, statistically based algorithms in CMOL, which is our solution to the general problem. Our approach is to take a real application with a number of different algorithmic stages and study the mapping of that stage to CMOL. The design spectrum for each stage will be based on a concept we call virtualization. The performance/price of a particular implementation is determined by the degree of virtualization, which in turn is determined by the algorithm and its dynamic behavior.
NSF 08-517 - Emerging Models and Technologies for Computation(EMT)EMT/MISC Nanogrid Implementation of Massively Parallel Arms主要研究者:Dan Hammerstrom,PSU;合作研究者:Richard格兰杰,达特茅斯;合作研究者:Konstantin Likharev,SUNY Stony摘要我们的目标是研究使用全新的实现技术,通过新的算法和新的架构和设计技术来增强智能计算(IC)。 我们将这项工作集中在计算机视觉中的识别问题上。 我们正在研究的算法起源于神经科学,但它们是这些算法的重要抽象,其目标是保留计算的本质,同时丢弃许多生物学细节。 第一个假设是,这些算法构成了一个有前途的方法,以实现提高水平的IC。 第二个假设是,扩展到非常大的网络是智能计算的必要要求,我们使用的算法确实可以扩展。 第三个假设是CMOS永远不会以合理的成本/性能为这些算法的缩放实现提供我们所需的算法缩放。 因此,我们需要移动到密度更大的介质。我们的第四个假设是,混合CMOS /纳米网格(CMOL)CMOL是最有前途的实现技术在地平线上,因此,这里提出的研究的目标是实现大规模并行,基于统计的算法在CMOL,这是我们的解决方案的一般问题。 我们的方法是采取一个真实的应用程序与一些不同的算法阶段,并研究该阶段的映射到CMOL。 每个阶段的设计范围将基于我们称为虚拟化的概念。 特定实现的性能/价格由虚拟化程度决定,而虚拟化程度又由算法及其动态行为决定。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Hammerstrom其他文献

Daniel Hammerstrom的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Hammerstrom', 18)}}的其他基金

NER/SNB: Implementing Nano-scale, Hierarchical, Distributed Memories with CMOL (Cmos / MOLecular) Circuits
NER/SNB:使用 CMOL(Cmos / MOLeular)电路实现纳米级、分层、分布式存储器
  • 批准号:
    0508533
  • 财政年份:
    2005
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Standard Grant
NER/SNB: Implementing Nano-scale, Hierarchical, Distributed Memories with CMOL (Cmos / MOLecular) Circuits
NER/SNB:使用 CMOL(Cmos / MOLeular)电路实现纳米级、分层、分布式存储器
  • 批准号:
    0553196
  • 财政年份:
    2005
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Standard Grant
Architectures for Silicon Nanoelectronics and Beyond A Workshop to Chart Research Directions
硅纳米电子学架构及其他领域绘制研究方向的研讨会
  • 批准号:
    0541927
  • 财政年份:
    2005
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Standard Grant
SGER: Computing with Nano-scale Devices - Looking at Alternative Models
SGER:使用纳米级设备进行计算 - 寻找替代模型
  • 批准号:
    0408170
  • 财政年份:
    2004
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Standard Grant
Research for Mixed Signal Electronic Technologies: A Joint Initiative Between NSF and SRC: Inter-Pulse-Interval Based Mixed Signal Representations
混合信号电子技术研究:NSF 和 SRC 之间的联合倡议:基于脉冲间间隔的混合信号表示
  • 批准号:
    0120369
  • 财政年份:
    2001
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Continuing Grant
Research Initiation - Vlsi (Very Large Scale Integration) Memory Techniques
研究启动 - Vlsi(超大规模集成)内存技术
  • 批准号:
    7805776
  • 财政年份:
    1978
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Standard Grant

相似海外基金

Identification of Risk Factors for predicting outcomes of COVID-19-Related Multisystem Inflammatory Syndrome in Children (MISC) using Real World Clinical Data
使用真实世界临床数据识别预测 COVID-19 相关儿童多系统炎症综合征 (MISC) 结果的风险因素
  • 批准号:
    10527735
  • 财政年份:
    2022
  • 资助金额:
    $ 29.63万
  • 项目类别:
MISC-CBO: A cluster randomized control trial to improve the mental health of OVC in South Africa
MISC-CBO:旨在改善南非 OVC 心理健康的整群随机对照试验
  • 批准号:
    10509789
  • 财政年份:
    2022
  • 资助金额:
    $ 29.63万
  • 项目类别:
Identification of Risk Factors for predicting outcomes of COVID-19-Related Multisystem Inflammatory Syndrome in Children (MISC) using Real World Clinical Data
使用真实世界临床数据识别预测 COVID-19 相关儿童多系统炎症综合征 (MISC) 结果的风险因素
  • 批准号:
    10679093
  • 财政年份:
    2022
  • 资助金额:
    $ 29.63万
  • 项目类别:
Severity Predictors Integrating salivary Transcriptomics and proteomics with Multi neural network Intelligence in SARS-CoV2 infection in Children (SPITS MISC)
将唾液转录组学和蛋白质组学与多神经网络智能相结合用于儿童 SARS-CoV2 感染的严重程度预测 (SPITS MISC)
  • 批准号:
    10273618
  • 财政年份:
    2021
  • 资助金额:
    $ 29.63万
  • 项目类别:
MISC-IPV: A Community Based Intervention for Children Traumatized By Intimate Partner Violence
MISC-IPV:针对因亲密伴侣暴力而受到创伤的儿童的社区干预措施
  • 批准号:
    10468010
  • 财政年份:
    2021
  • 资助金额:
    $ 29.63万
  • 项目类别:
MISC-IPV: A Community Based Intervention for Children Traumatized By Intimate Partner Violence
MISC-IPV:针对因亲密伴侣暴力而受到创伤的儿童的社区干预措施
  • 批准号:
    10669691
  • 财政年份:
    2021
  • 资助金额:
    $ 29.63万
  • 项目类别:
Severity Predictors Integrating salivary Transcriptomics and proteomics with Multi neural network Intelligence in SARS-CoV2 infection in Children (SPITS MISC)
将唾液转录组学和蛋白质组学与多神经网络智能相结合用于儿童 SARS-CoV2 感染的严重程度预测 (SPITS MISC)
  • 批准号:
    10733697
  • 财政年份:
    2021
  • 资助金额:
    $ 29.63万
  • 项目类别:
Severity Predictors Integrating salivary Transcriptomics and proteomics with Multi neural network Intelligence in SARS-CoV2 infection in Children (SPITS MISC)
将唾液转录组学和蛋白质组学与多神经网络智能相结合用于儿童 SARS-CoV2 感染的严重程度预测 (SPITS MISC)
  • 批准号:
    10320490
  • 财政年份:
    2021
  • 资助金额:
    $ 29.63万
  • 项目类别:
Severity Predictors Integrating salivary Transcriptomics and proteomics with Multi neural network Intelligence in SARS-CoV2 infection in Children (SPITS MISC)
将唾液转录组学和蛋白质组学与多神经网络智能相结合用于儿童 SARS-CoV2 感染的严重程度预测 (SPITS MISC)
  • 批准号:
    10847809
  • 财政年份:
    2021
  • 资助金额:
    $ 29.63万
  • 项目类别:
MISC-IPV: A Community Based Intervention for Children Traumatized By Intimate Partner Violence
MISC-IPV:针对因亲密伴侣暴力而受到创伤的儿童的社区干预措施
  • 批准号:
    10208508
  • 财政年份:
    2021
  • 资助金额:
    $ 29.63万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了