Collaborative Research: Optimal Changepoint Detection and Identification Algorithms with Applications

协作研究:最优变点检测和识别算法及其应用

基本信息

项目摘要

Changepoint problems deal with detecting anomalies or more generally changes in patterns. In the sequential setting, as long as the behavior of observations is consistent with the ``normal state," one is content to let the process continue. If the state changes, then one is interested in detecting that a change is in effect, usually as quickly as possible. Any detection policy may give rise to false alarms and attempting to avoid false alarms too strenuously will lead to a long delay between the time of occurrence of the change and its detection. The gist of the changepoint problem is to produce a detection policy that minimizes the average detection delay subject to a bound on the false alarm rate. While the quickest changepoint detection problem has been studied for over fifty years, there has been remarkably little prior work on theoretical extensions to general stochastic models that go beyond independent and identically distributed observations in the pre- and post-change modes, and to the distributed sensor setting. The goal of this project is to investigate the properties of known changepoint detection procedures and to develop novel procedures for change detection and classification under general system models that are relevant in practical applications, as well as to provide an analytical framework to predict their performance. The usefulness of the theoretical advances will be demonstrated through two key application areas: (a) the rapid detection of intrusions and disruptions in computer networks, and (b) the efficient monitoring of critical infrastructures. In both cases, the distributions of the noisy observations change, and this change occurs at an a priori unknown point in time. Also, in both cases, the detection should be performed in a timely manner, while keeping the false alarm rate at an acceptable level. Our results will be validated using simulations as well as real data (to the extent possible).
变更点问题处理检测异常或更普遍的模式更改。在顺序设置中,只要观察到的行为与“正常状态”一致,人们就会满足于让这个过程继续下去。如果状态发生了变化,那么人们就有兴趣检测变化是否有效,通常是尽可能快地检测。任何检测策略都可能产生假警报,过于努力地避免假警报将导致变化发生时间和检测时间之间的长时间延迟。变更点问题的要点是产生一种检测策略,使受虚警率约束的平均检测延迟最小化。虽然最快的变化点检测问题已经研究了50多年,但对于一般随机模型的理论扩展,除了在变化前和变化后模式下的独立和同分布观测之外,以及分布式传感器设置,先前的工作非常少。这个项目的目标是调查已知的变更点检测程序的特性,并在实际应用中相关的一般系统模型下开发新的变更检测和分类程序,以及提供一个分析框架来预测它们的性能。理论进展的有用性将通过两个关键应用领域得到证明:(a)快速检测计算机网络的入侵和中断,以及(b)有效监测关键基础设施。在这两种情况下,噪声观测值的分布都发生了变化,这种变化发生在一个先验的未知时间点。此外,在这两种情况下,都应及时进行检测,同时将虚警率保持在可接受的水平。我们的结果将使用模拟和真实数据进行验证(尽可能)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Venugopal Veeravalli其他文献

Venugopal Veeravalli的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Venugopal Veeravalli', 18)}}的其他基金

Collaborative Research: CIF: Medium: Emerging Directions in Robust Learning and Inference
协作研究:CIF:媒介:稳健学习和推理的新兴方向
  • 批准号:
    2106727
  • 财政年份:
    2021
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Continuing Grant
Efficient Strategies for Pandemic Monitoring and Recovery
流行病监测和恢复的有效策略
  • 批准号:
    2033900
  • 财政年份:
    2020
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Standard Grant
SpecEES: Collaborative Research: Energy Efficient Dynamic Spectrum Access in Uncoordinated Networks
SpecEES:协作研究:不协调网络中的节能动态频谱接入
  • 批准号:
    1730882
  • 财政年份:
    2017
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Standard Grant
CIF: Small: Collaborative Research: Network Event Detection with Multistream Observations
CIF:小型:协作研究:通过多流观察进行网络事件检测
  • 批准号:
    1618658
  • 财政年份:
    2016
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Standard Grant
CIF: Medium: Collaborative Research: Quickest Change Detection Techniques with Signal Processing Applications
CIF:媒介:协作研究:信号处理应用的最快变化检测技术
  • 批准号:
    1514245
  • 财政年份:
    2015
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Continuing Grant
WiFiUS: Message and CSI Sharing for Cellular Interference Management with Backhaul Constraints
WiFiUS:用于具有回程约束的蜂窝干扰管理的消息和 CSI 共享
  • 批准号:
    1457168
  • 财政年份:
    2015
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Standard Grant
IF: Student Travel Support for the 2014 IEEE International Symposium on Information Theory
IF:2014 年 IEEE 国际信息论研讨会学生旅行支持
  • 批准号:
    1434211
  • 财政年份:
    2014
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Advanced Quickest Multidecision Change Detection-Classification Methods for Threat Assessment in Distributed Sensing Systems
合作研究:ATD:分布式传感系统中威胁评估的先进最快多决策变化检测分类方法
  • 批准号:
    1222498
  • 财政年份:
    2012
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Continuing Grant
CIF: Large: Collaborative Research: Controlled Sensing, and Distributed Signal Processing and Decision Making in Networked Systems
CIF:大型:协作研究:网络系统中的受控传感、分布式信号处理和决策
  • 批准号:
    1111342
  • 财政年份:
    2011
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Standard Grant
CIF:Medium:Collaborative Research: Understanding and Managing Interference in Communication Networks
CIF:中:协作研究:理解和管理通信网络中的干扰
  • 批准号:
    0904619
  • 财政年份:
    2009
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
  • 批准号:
    2323415
  • 财政年份:
    2024
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrating Optimal Function and Compliant Mechanisms for Ubiquitous Lower-Limb Powered Prostheses
合作研究:将优化功能和合规机制整合到无处不在的下肢动力假肢中
  • 批准号:
    2344765
  • 财政年份:
    2024
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Can Irregular Structural Patterns Beat Perfect Lattices? Biomimicry for Optimal Acoustic Absorption
合作研究:不规则结构模式能否击败完美晶格?
  • 批准号:
    2341950
  • 财政年份:
    2024
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrating Optimal Function and Compliant Mechanisms for Ubiquitous Lower-Limb Powered Prostheses
合作研究:将优化功能和合规机制整合到无处不在的下肢动力假肢中
  • 批准号:
    2344766
  • 财政年份:
    2024
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
  • 批准号:
    2323414
  • 财政年份:
    2024
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Can Irregular Structural Patterns Beat Perfect Lattices? Biomimicry for Optimal Acoustic Absorption
合作研究:不规则结构模式能否击败完美晶格?
  • 批准号:
    2341951
  • 财政年份:
    2024
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER--Evaluation of Optimal Mesonetwork Design for Monitoring and Predicting North American Monsoon (NAM) Convection Using Observing System Simulation
合作研究:EAGER——利用观测系统模拟监测和预测北美季风(NAM)对流的最佳中观网络设计评估
  • 批准号:
    2308410
  • 财政年份:
    2023
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Standard Grant
Collaborative Research: ECCS: Small: Personalized RF Sensing: Learning Optimal Representations of Human Activities and Ethogram on the Fly
合作研究:ECCS:小型:个性化射频传感:学习人类活动的最佳表示和动态行为图
  • 批准号:
    2233503
  • 财政年份:
    2023
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Parabolic Monge-Ampère Equations, Computational Optimal Transport, and Geometric Optics
合作研究:抛物线 Monge-AmpeÌre 方程、计算最优传输和几何光学
  • 批准号:
    2246606
  • 财政年份:
    2023
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Standard Grant
Collaborative Research: An Optimal Algorithm for Orthogonal Eigenvectors of Symmetric Tridiagonals
协作研究:对称三对角线正交特征向量的最优算法
  • 批准号:
    2309596
  • 财政年份:
    2023
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了