Collaborative Research: ATD: Advanced Quickest Multidecision Change Detection-Classification Methods for Threat Assessment in Distributed Sensing Systems

合作研究:ATD:分布式传感系统中威胁评估的先进最快多决策变化检测分类方法

基本信息

项目摘要

The overarching goal of this project is to develop the next generation of mathematical and statistical algorithms and methodologies in sensor systems for the detection of chemical and biological materials based on advanced quickest change detection and classification methods. To this end, the next generation of the quickest joint change detection and classification methods will be developed that are optimal or nearly optimal in a variety of scenarios. Specifically, a general theory of multidecision quickest change detection and classification for non-i.i.d. stochastic models will be developed. Developing this general theory requires novel probabilistic methods for both designing effective quickest change detection-classification strategies as well as analyzing their performance. Furthermore, the general theory will be extended to the distributed sensor setting. In particular, novel techniques for adaptive sampling at the sensors will be explored, change process detection methods will be developed for settings where the change might occur at different times at the various sensors, and techniques for controlling the sensing process to make it energy-efficient will be designed. It is expected that the proposed theoretical advances in change detection and classification will have a strong practical impact on future systems that are built for the purposes of detecting and predicting chemical, biological and related threats using large sensor networks. Conversely the engineering insights gained from working on this important problem will lead to significant developments in the underlying statistical theory of quickest change detection and classification. Advances in this theory couldpotentially have an impact on a broad spectrum of applications from qualitycontrol engineering to econometrics.
该项目的总体目标是在先进的最快变化检测和分类方法的基础上,开发传感器系统中用于检测化学和生物材料的下一代数学和统计算法和方法。为此,将开发下一代最快的联合变化检测和分类方法,这些方法在各种情况下都是最佳或接近最佳的。具体地说,非I.I.D.的多决策最快变化检测和分类的一般理论。将开发随机模型。发展这一一般理论需要新的概率方法来设计有效的、最快的变化检测-分类策略以及分析其性能。此外,一般理论将扩展到分布式传感器环境。特别是,将探索在传感器处自适应采样的新技术,将针对在不同传感器处可能在不同时间发生变化的设置开发变化过程检测方法,并将设计用于控制传感过程以使其节能的技术。预计拟议的变化检测和分类方面的理论进步将对未来利用大型传感器网络检测和预测化学、生物和相关威胁的系统产生强大的实际影响。相反,从研究这一重要问题中获得的工程学见解将导致最快变化检测和分类的基本统计理论的重大发展。这一理论的进步可能会对从质量控制工程到计量经济学的广泛应用产生潜在影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Venugopal Veeravalli其他文献

Venugopal Veeravalli的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Venugopal Veeravalli', 18)}}的其他基金

Collaborative Research: CIF: Medium: Emerging Directions in Robust Learning and Inference
协作研究:CIF:媒介:稳健学习和推理的新兴方向
  • 批准号:
    2106727
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Efficient Strategies for Pandemic Monitoring and Recovery
流行病监测和恢复的有效策略
  • 批准号:
    2033900
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
SpecEES: Collaborative Research: Energy Efficient Dynamic Spectrum Access in Uncoordinated Networks
SpecEES:协作研究:不协调网络中的节能动态频谱接入
  • 批准号:
    1730882
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CIF: Small: Collaborative Research: Network Event Detection with Multistream Observations
CIF:小型:协作研究:通过多流观察进行网络事件检测
  • 批准号:
    1618658
  • 财政年份:
    2016
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CIF: Medium: Collaborative Research: Quickest Change Detection Techniques with Signal Processing Applications
CIF:媒介:协作研究:信号处理应用的最快变化检测技术
  • 批准号:
    1514245
  • 财政年份:
    2015
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
WiFiUS: Message and CSI Sharing for Cellular Interference Management with Backhaul Constraints
WiFiUS:用于具有回程约束的蜂窝干扰管理的消息和 CSI 共享
  • 批准号:
    1457168
  • 财政年份:
    2015
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
IF: Student Travel Support for the 2014 IEEE International Symposium on Information Theory
IF:2014 年 IEEE 国际信息论研讨会学生旅行支持
  • 批准号:
    1434211
  • 财政年份:
    2014
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CIF: Large: Collaborative Research: Controlled Sensing, and Distributed Signal Processing and Decision Making in Networked Systems
CIF:大型:协作研究:网络系统中的受控传感、分布式信号处理和决策
  • 批准号:
    1111342
  • 财政年份:
    2011
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CIF:Medium:Collaborative Research: Understanding and Managing Interference in Communication Networks
CIF:中:协作研究:理解和管理通信网络中的干扰
  • 批准号:
    0904619
  • 财政年份:
    2009
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Optimal Changepoint Detection and Identification Algorithms with Applications
协作研究:最优变点检测和识别算法及其应用
  • 批准号:
    0830169
  • 财政年份:
    2008
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219956
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: a-DMIT: a novel Distributed, MultI-channel, Topology-aware online monitoring framework of massive spatiotemporal data
合作研究:ATD:a-DMIT:一种新颖的分布式、多通道、拓扑感知的海量时空数据在线监测框架
  • 批准号:
    2220495
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319370
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建​​模和风险缓解
  • 批准号:
    2319552
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219904
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319371
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319372
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建​​模和风险缓解
  • 批准号:
    2319551
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
  • 批准号:
    2220523
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
  • 批准号:
    2220529
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了