Efficient Strategies for Pandemic Monitoring and Recovery
流行病监测和恢复的有效策略
基本信息
- 批准号:2033900
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the absence of effective vaccines or treatments, social distancing has been shown to be effective in controlling the initial spread of a pandemic. While the decision on when to start social distancing can be based on the occurrence of a few positive test cases, the decision on when to ease such measures during pandemic recovery is considerably more difficult due to the possibility of a second wave. Our goal in this project is to develop new artificial intelligence (AI) algorithms to support this decision-making, by making more efficient use of limited test availability and also drawing on novel data sources (and physical models) not limited by testing. The research will be divided into two inter-related thrusts. The first thrust in on efficient ways to determine the status of individuals in the community through new AI based methods for group testing. The second thrust is focused on community level pandemic assessment using a data-driven quickest change detection (QCD) framework.The project, if successful, will have a direct and obvious impact on pandemic recovery, for COVID-19 and future pandemics. This will in turn have significant social and economic impacts. The goal is to rapidly deploy research results via relationships in government and industry. Broader impact activities include: navigating the ethical tradeoff between equity and accuracy in group testing designs; supporting a diverse cohort of undergraduate researchers in this topical area; developing a new, general educational module for laboratory-based data science classes (at Illinois and around the world); integrating diversity by training a diverse cohort of graduate students; and public outreach via established media presence.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在缺乏有效疫苗或治疗方法的情况下,社交距离已被证明能有效控制大流行病的初期传播。虽然何时开始社交距离的决定可基于少数阳性测试个案的出现,但由于可能出现第二波疫情,因此在疫情复苏期间何时放宽有关措施的决定要困难得多。我们在这个项目中的目标是开发新的人工智能(AI)算法来支持这种决策,通过更有效地利用有限的测试可用性,并利用不受测试限制的新数据源(和物理模型)。研究将分为两个相互关联的主题。第一个重点是通过新的基于人工智能的群体测试方法来确定个人在社区中的地位的有效方法。第二个重点是使用数据驱动的最快变化检测(QCD)框架进行社区层面的流行病评估。该项目如果成功,将对COVID-19和未来流行病的流行病恢复产生直接和明显的影响。这反过来将产生重大的社会和经济影响。目标是通过与政府和行业的关系快速部署研究成果。影响更广泛的活动包括:导航组测试设计中的公平性和准确性之间的道德权衡;支持这一专题领域的本科研究人员的多样化队列;为基于实验室的数据科学课程开发一个新的通用教育模块(在伊利诺伊州和世界各地);通过培养研究生的多样化队列整合多样性;该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quickest Change Detection with Leave-one-out Density Estimation
通过留一法密度估计进行最快的变化检测
- DOI:10.1109/icassp49357.2023.10096341
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Liang, Yuchen;Veeravalli, Venugopal V.
- 通讯作者:Veeravalli, Venugopal V.
Designing Discontinuities
设计不连续性
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Ferwana, Ibtihal;Park, Suyoung;Wu, Ting-Yi;Varshney, Lav R.
- 通讯作者:Varshney, Lav R.
Quickest Change Detection with Controlled Sensing
通过受控传感实现最快的变化检测
- DOI:10.1109/isit50566.2022.9834351
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Fellouris, Georgios;Veeravalli, Venugopal V.
- 通讯作者:Veeravalli, Venugopal V.
Social Bubbles and Superspreaders: Source Identification for Contagion Processes on Hypertrees
- DOI:10.1109/ssp49050.2021.9513748
- 发表时间:2020-10
- 期刊:
- 影响因子:0
- 作者:Sam Spencer;L. Varshney
- 通讯作者:Sam Spencer;L. Varshney
Expected Extinction Times of Epidemics With State-Dependent Infectiousness
- DOI:10.1109/tnse.2021.3131954
- 发表时间:2022-05-01
- 期刊:
- 影响因子:6.6
- 作者:Bhimaraju,Akhil;Chatterjee,Avhishek;Varshney,Lav R.
- 通讯作者:Varshney,Lav R.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Venugopal Veeravalli其他文献
Venugopal Veeravalli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Venugopal Veeravalli', 18)}}的其他基金
Collaborative Research: CIF: Medium: Emerging Directions in Robust Learning and Inference
协作研究:CIF:媒介:稳健学习和推理的新兴方向
- 批准号:
2106727 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
SpecEES: Collaborative Research: Energy Efficient Dynamic Spectrum Access in Uncoordinated Networks
SpecEES:协作研究:不协调网络中的节能动态频谱接入
- 批准号:
1730882 - 财政年份:2017
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
CIF: Small: Collaborative Research: Network Event Detection with Multistream Observations
CIF:小型:协作研究:通过多流观察进行网络事件检测
- 批准号:
1618658 - 财政年份:2016
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
CIF: Medium: Collaborative Research: Quickest Change Detection Techniques with Signal Processing Applications
CIF:媒介:协作研究:信号处理应用的最快变化检测技术
- 批准号:
1514245 - 财政年份:2015
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
WiFiUS: Message and CSI Sharing for Cellular Interference Management with Backhaul Constraints
WiFiUS:用于具有回程约束的蜂窝干扰管理的消息和 CSI 共享
- 批准号:
1457168 - 财政年份:2015
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
IF: Student Travel Support for the 2014 IEEE International Symposium on Information Theory
IF:2014 年 IEEE 国际信息论研讨会学生旅行支持
- 批准号:
1434211 - 财政年份:2014
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Advanced Quickest Multidecision Change Detection-Classification Methods for Threat Assessment in Distributed Sensing Systems
合作研究:ATD:分布式传感系统中威胁评估的先进最快多决策变化检测分类方法
- 批准号:
1222498 - 财政年份:2012
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
CIF: Large: Collaborative Research: Controlled Sensing, and Distributed Signal Processing and Decision Making in Networked Systems
CIF:大型:协作研究:网络系统中的受控传感、分布式信号处理和决策
- 批准号:
1111342 - 财政年份:2011
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
CIF:Medium:Collaborative Research: Understanding and Managing Interference in Communication Networks
CIF:中:协作研究:理解和管理通信网络中的干扰
- 批准号:
0904619 - 财政年份:2009
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: Optimal Changepoint Detection and Identification Algorithms with Applications
协作研究:最优变点检测和识别算法及其应用
- 批准号:
0830169 - 财政年份:2008
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
Establishing Stakeholder Priorities for the Development and Implementation of Strategies to Support Continued Youth & Family Recovery from the COVID-19 Pandemic
为制定和实施支持持续青年的战略确定利益相关者的优先事项
- 批准号:
480796 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Miscellaneous Programs
Resilience of Faith-Based Social Enterprises: An International Comparative Study of Survival Strategies under the COVID-19 Pandemic
基于信仰的社会企业的韧性:COVID-19 大流行下生存策略的国际比较研究
- 批准号:
23K01955 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Accelerating Digital Advantage: Supporting SMEs to thrive in a post-pandemic world through adoption of digital strategies.
加速数字化优势:通过采用数字化战略,支持中小企业在疫情后的世界中蓬勃发展。
- 批准号:
CCB21-2021-00128 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Applied Research and Technology Partnership Grants
Tourism impacts of the Covid-19 pandemic and strategies for the recovery.
Covid-19 大流行对旅游业的影响和复苏策略。
- 批准号:
22K18106 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Strategies and Technologies for United and Resilient Critical Infrastructures and Vital Services in Pandemic-Stricken Europe
受疫情影响的欧洲统一、有弹性的关键基础设施和重要服务的战略和技术
- 批准号:
10051144 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
EU-Funded
Pre-clinical development of broad-spectrum antiviral strategies against human respiratory viruses of pandemic concern
针对大流行病的人类呼吸道病毒的广谱抗病毒策略的临床前开发
- 批准号:
462582 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Operating Grants
PIPP Phase I: Mobility Analysis for Pandemic Prevention Strategies (MAPPS)
PIPP 第一阶段:流行病预防策略的流动性分析 (MAPPS)
- 批准号:
2154941 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Examining the impact of young children's digital media use during the COVID-19 pandemic on health and developmental outcomes: A comprehensive assessment to inform harm-reduction and positive digital media use strategies
检查 COVID-19 大流行期间幼儿数字媒体使用对健康和发育结果的影响:一项综合评估,为减少伤害和积极的数字媒体使用策略提供信息
- 批准号:
460310 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Operating Grants
Mental Health during the COVID-19 Pandemic: An Ongoing Living Systematic Review of Mental Health Burden and Intervention Effectiveness to Inform Management Strategies During and Post-COVID-19
COVID-19 大流行期间的心理健康:对心理健康负担和干预有效性进行持续的实时系统审查,为 COVID-19 期间和之后的管理策略提供信息
- 批准号:
448865 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Operating Grants
Global Sustainability Strategies of Asian Multinational Enterprises: Beyond COVID-19 Pandemic
亚洲跨国企业的全球可持续发展战略:超越 COVID-19 大流行
- 批准号:
21K01671 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)