Collaborative Research: CIF: Medium: Emerging Directions in Robust Learning and Inference

协作研究:CIF:媒介:稳健学习和推理的新兴方向

基本信息

项目摘要

Future applications of national importance, such as healthcare, critical infrastructure, transportation systems, and smart cities, are expected to increasingly rely on machine-learning methods, including structured learning, supervised learning, and reinforcement learning. In many of these applications, the probabilistic distribution governing the data may undergo variations with time and location, and data could be corrupted by faulty or malicious agents/sensors. Such model deviation and data corruption could result in significant performance degradation. The goal in this project is to explore new ways to design learning and inference methods that are robust to distributional uncertainty and data corruption. This project is bridging and further advancing research in areas of statistical learning, optimization, control theory, network science, reinforcement learning, statistical signal processing and information theory. The methods developed are likely to have significant impact on a wide range of applications in areas of societal importance such as healthcare, transportation systems, smart grids, and smart cities. The investigators are co-organizing special sessions at conferences, workshops and symposia on robust learning and inference to disseminate the research outcomes of this project, formalize far-reaching research directions, identify new challenges in this emerging area, stimulate the development of original research ideas, and foster interdisciplinary collaborations. The investigators are committed to broadening participation of under-represented minorities and women both among the graduate and undergraduate students in computing and engineering. The investigators are enriching their current courses and further developing new courses on topics related to this project.This project is expected to make new contributions to the theory and practice of robust learning and inference. Several emerging directions are being investigated, including robust sketch-based learning, robust mean estimation, synthesis of confusing inputs to machine-learning models, robustness to distributional uncertainty at inference time, and robust model-free reinforcement learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
未来具有国家重要性的应用,如医疗保健、关键基础设施、交通系统和智慧城市,预计将越来越多地依赖机器学习方法,包括结构化学习、监督学习和强化学习。在许多这样的应用程序中,控制数据的概率分布可能会随着时间和位置的变化而变化,数据可能会被错误的或恶意的代理/传感器破坏。这种模型偏差和数据损坏可能导致显著的性能下降。该项目的目标是探索设计对分布不确定性和数据损坏具有鲁棒性的学习和推理方法的新方法。该项目衔接并进一步推进了统计学习、优化、控制理论、网络科学、强化学习、统计信号处理和信息论等领域的研究。所开发的方法可能会对医疗保健、交通系统、智能电网和智能城市等具有社会重要性的领域的广泛应用产生重大影响。研究人员正在共同组织关于稳健学习和推理的会议、研讨会和专题讨论会,以传播本项目的研究成果,确定影响深远的研究方向,确定这一新兴领域的新挑战,激发原创性研究思想的发展,并促进跨学科合作。研究人员致力于扩大未被充分代表的少数民族和妇女在计算机和工程专业的研究生和本科生中的参与。研究人员正在丰富他们现有的课程,并进一步开发与该项目相关的新课程。本课题有望为鲁棒学习与推理的理论与实践做出新的贡献。目前正在研究几个新兴的方向,包括鲁棒的基于草图的学习、鲁棒的均值估计、机器学习模型的混淆输入的合成、对推理时分布不确定性的鲁棒性以及鲁棒的无模型强化学习。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Robust Mean Estimation in High Dimensions: An Outlier Fraction Agnostic and Efficient Algorithm
Principled OOD Detection via Multiple Testing
Robust High-Dimensional Linear Discriminant Analysis under Training Data Contamination
High-Dimensional Robust Mean Estimation via Outlier-Sparsity Minimization
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Venugopal Veeravalli其他文献

Venugopal Veeravalli的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Venugopal Veeravalli', 18)}}的其他基金

Efficient Strategies for Pandemic Monitoring and Recovery
流行病监测和恢复的有效策略
  • 批准号:
    2033900
  • 财政年份:
    2020
  • 资助金额:
    $ 45.9万
  • 项目类别:
    Standard Grant
SpecEES: Collaborative Research: Energy Efficient Dynamic Spectrum Access in Uncoordinated Networks
SpecEES:协作研究:不协调网络中的节能动态频谱接入
  • 批准号:
    1730882
  • 财政年份:
    2017
  • 资助金额:
    $ 45.9万
  • 项目类别:
    Standard Grant
CIF: Small: Collaborative Research: Network Event Detection with Multistream Observations
CIF:小型:协作研究:通过多流观察进行网络事件检测
  • 批准号:
    1618658
  • 财政年份:
    2016
  • 资助金额:
    $ 45.9万
  • 项目类别:
    Standard Grant
CIF: Medium: Collaborative Research: Quickest Change Detection Techniques with Signal Processing Applications
CIF:媒介:协作研究:信号处理应用的最快变化检测技术
  • 批准号:
    1514245
  • 财政年份:
    2015
  • 资助金额:
    $ 45.9万
  • 项目类别:
    Continuing Grant
WiFiUS: Message and CSI Sharing for Cellular Interference Management with Backhaul Constraints
WiFiUS:用于具有回程约束的蜂窝干扰管理的消息和 CSI 共享
  • 批准号:
    1457168
  • 财政年份:
    2015
  • 资助金额:
    $ 45.9万
  • 项目类别:
    Standard Grant
IF: Student Travel Support for the 2014 IEEE International Symposium on Information Theory
IF:2014 年 IEEE 国际信息论研讨会学生旅行支持
  • 批准号:
    1434211
  • 财政年份:
    2014
  • 资助金额:
    $ 45.9万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Advanced Quickest Multidecision Change Detection-Classification Methods for Threat Assessment in Distributed Sensing Systems
合作研究:ATD:分布式传感系统中威胁评估的先进最快多决策变化检测分类方法
  • 批准号:
    1222498
  • 财政年份:
    2012
  • 资助金额:
    $ 45.9万
  • 项目类别:
    Continuing Grant
CIF: Large: Collaborative Research: Controlled Sensing, and Distributed Signal Processing and Decision Making in Networked Systems
CIF:大型:协作研究:网络系统中的受控传感、分布式信号处理和决策
  • 批准号:
    1111342
  • 财政年份:
    2011
  • 资助金额:
    $ 45.9万
  • 项目类别:
    Standard Grant
CIF:Medium:Collaborative Research: Understanding and Managing Interference in Communication Networks
CIF:中:协作研究:理解和管理通信网络中的干扰
  • 批准号:
    0904619
  • 财政年份:
    2009
  • 资助金额:
    $ 45.9万
  • 项目类别:
    Standard Grant
Collaborative Research: Optimal Changepoint Detection and Identification Algorithms with Applications
协作研究:最优变点检测和识别算法及其应用
  • 批准号:
    0830169
  • 财政年份:
    2008
  • 资助金额:
    $ 45.9万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403122
  • 财政年份:
    2024
  • 资助金额:
    $ 45.9万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402815
  • 财政年份:
    2024
  • 资助金额:
    $ 45.9万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343599
  • 财政年份:
    2024
  • 资助金额:
    $ 45.9万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343600
  • 财政年份:
    2024
  • 资助金额:
    $ 45.9万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402817
  • 财政年份:
    2024
  • 资助金额:
    $ 45.9万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326622
  • 财政年份:
    2024
  • 资助金额:
    $ 45.9万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402816
  • 财政年份:
    2024
  • 资助金额:
    $ 45.9万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403123
  • 财政年份:
    2024
  • 资助金额:
    $ 45.9万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326621
  • 财政年份:
    2024
  • 资助金额:
    $ 45.9万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Versatile Data Synchronization: Novel Codes and Algorithms for Practical Applications
合作研究:CIF:小型:多功能数据同步:实际应用的新颖代码和算法
  • 批准号:
    2312872
  • 财政年份:
    2023
  • 资助金额:
    $ 45.9万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了