SGER: Fractals, Anomalous Heat Conduction and Thermoelasticity

SGER:分形、反常热传导和热弹性

基本信息

项目摘要

ABSTRACTResearch Objectives and ApproachesThe principal objective of this project is to develop a continuum thermoelasticity of materials with anomalous (non-Fourier type) heat conduction from the standpoint of fractal material structures. This will substantially broaden the scope of materials whose mechanics can be handled by partial differential equations. While the conventional mate¬rials in most continuum theories are assumed to be smooth and to satisfy the postulate of separation of scales, the planned research, being focused on fractal materials, will drop that requirement. New forms of differential equations will be derived and employed in solution of the initial-boundary value problems, and new fundamental understanding of constitutive responses (thermo-elasticity and thermo-viscoelasticity) of various materials having fractal geometries will be developed. Societal BenefitsThis project will have impact on the applicability of continuum mechanics (and physics) to studies of material response. The highly complex media which have so far been the domain of condensed matter physics, geophysics and biophysics etc. (polymer clusters, gels, rock systems, percolating networks, nervous systems, pulmonary systems...) will become open to studies conventionally reserved for smooth materials. This will allow the set-up and solution of initial-boundary value problems of very complex/multiscale materials of both elastic and inelastic type. Two graduate students will be involved in this research. The proposed research goes hand-in-hand with the writing of a monograph Thermoelasticity with Finite Wave Speeds (for Oxford Mathematical Monographs) on thermoelastodynamics of materials with anoma¬lous heat conduction.
摘要:研究目的和方法本项目的主要目的是从分形材料结构的角度研究具有异常(非傅立叶型)热传导的材料的连续热弹性。这将大大拓宽材料的范围,其力学可以用偏微分方程来处理。虽然在大多数连续介质理论中,传统材料被假设为光滑的,并且满足尺度分离的假设,但计划研究的重点是分形材料,将放弃这一要求。新形式的微分方程将被导出并用于解决初始边值问题,并将发展对具有分形几何形状的各种材料的本构响应(热弹性和热粘弹性)的新的基本理解。社会效益本项目将对连续介质力学(和物理学)在材料响应研究中的适用性产生影响。迄今为止属于凝聚态物理、地球物理学和生物物理学等领域的高度复杂的介质(聚合物团簇、凝胶、岩石系统、渗透网络、神经系统、肺系统……)将向传统上为光滑材料保留的研究开放。这将允许建立和解决弹性和非弹性类型的非常复杂/多尺度材料的初始边界值问题。两名研究生将参与这项研究。拟议的研究与关于异常热传导材料的热弹性动力学的专著《有限波速热弹性》(牛津数学专著)的撰写密切相关。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Martin Starzewski其他文献

Martin Starzewski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Martin Starzewski', 18)}}的其他基金

Poromechanics Beyond the Second Law of Thermodynamics
超越热力学第二定律的孔隙力学
  • 批准号:
    1462749
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mechanics of Fractal Materials
分形材料力学
  • 批准号:
    1030940
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Multiscale Mechanics of Paper
纸张的多尺度力学
  • 批准号:
    9713764
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Random Fields of Micromechanics: Constitutive Laws and Plastic Flow
微观力学的随机场:本构定律和塑性流动
  • 批准号:
    9202772
  • 财政年份:
    1992
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Micromechanics of Damage: Percolation and Fractals on Random Fields
损伤的微观力学:随机场上的渗透和分形
  • 批准号:
    8717885
  • 财政年份:
    1987
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

REU Site: Fractals and Stochastics at UConn
REU 网站:康涅狄格大学的分形和随机指标
  • 批准号:
    2349433
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference: Analysis on fractals and networks with applications, at Luminy
会议:分形和网络分析及其应用,在 Luminy 举行
  • 批准号:
    2334026
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Heat Semigroups and Strichartz Estimates on Fractals
职业:分形上的热半群和 Strichartz 估计
  • 批准号:
    2140664
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Analysis, geometry and their interplays on fractals and stochastic processes on them
分形及其随机过程的分析、几何及其相互作用
  • 批准号:
    22H01128
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: The Geometry of Fractals Meets Fourier Analysis
职业:分形几何与傅立叶分析的结合
  • 批准号:
    2142221
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Dynamics and measures on fractals
分形的动力学和测量
  • 批准号:
    2611036
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Studentship
Computational Modelling of Leidenfrost Fractals
莱顿弗罗斯特分形的计算模型
  • 批准号:
    2419855
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Studentship
Electronic Fractals in Strongly Correlated Quantum Materials
强相关量子材料中的电子分形
  • 批准号:
    2006192
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Cornell 7th Conference on Analysis, Probability, and Mathematical Physics on Fractals
康奈尔大学第七届分形分析、概率和数学物理会议
  • 批准号:
    2000148
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CBMS Conference: Gaussian Random Fields, Fractals, Stochastic Partial Differential Equations, and Extremes
CBMS 会议:高斯随机场、分形、随机偏微分方程和极值
  • 批准号:
    1933330
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了