CAREER: Analysis of quantum many body systems
职业:量子多体系统分析
基本信息
- 批准号:0845292
- 负责人:
- 金额:$ 40.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-06-01 至 2012-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The main focus of this research project is the mathematical analysis of many-body quantum systems, in particular, interacting quantum gases at low temperature. The recent experimental advances in studying ultra-cold atomic gases have led to renewed interest in these systems. They display a rich variety of quantum phenomena, including, e.g., Bose-Einstein condensation and superfluidity, which makes them of importance both from a physical and a mathematical point of view. In mathematical physics, there has been substantial progress in the last few years in understanding some of interesting phenomena occurring in quantum gases, and the goal of this project is to further investigate some of the relevant issues. Due to the complex nature of the problems, new mathematical ideas and methods will have to be developed for this purpose. Progress along these lines can be expected to yield valuable insight into the complex behavior of many-body quantum systems at low temperature. Among the questions that are addressed in this project are bounds on the free energy of quantum gases at low density and low temperature, as well as qualitative and quantitative statements about the corresponding thermal equilibrium states. The systems to be considered include both homogeneous and trapped systems, either continuous or on a lattice. The questions of interest concern, e.g., Bose/Fermi mixtures, low dimensional systems, rapidly rotating gases, as well as superfluidity for lattice systems. Moreover, the Bardeen-Cooper-Schrieffer theory of fermion pairing will be investigated, with the goal of further increasing the understanding of the low temperature behavior of fermionic systems with general interactions. Broader Impact. The goal of this project is the development of new mathematical tools for dealing with complex problems in many-body quantum systems. New mathematical methods lead to different points of view and can thus increase the understanding of physical systems. These methods will be used in physics graduate courses of the P.I. and others. The organization of mathematical physics conferences and schools will disseminate the use of these powerful methods.
本研究项目的主要重点是多体量子系统的数学分析,特别是在低温下相互作用的量子气体。最近在研究超冷原子气体方面的实验进展使人们对这些系统重新产生了兴趣。它们显示了丰富多样的量子现象,包括,例如,玻色-爱因斯坦凝聚和超流体,这使得它们从物理和数学的角度来看都很重要。在数学物理方面,过去几年在理解量子气体中发生的一些有趣现象方面取得了实质性进展,本项目的目标是进一步研究一些相关问题。由于问题的复杂性,必须为此目的发展新的数学思想和方法。沿着这些方向的进展有望对低温下多体量子系统的复杂行为产生有价值的见解。本课题研究的问题包括量子气体在低密度和低温下的自由能边界,以及相应的热平衡态的定性和定量表述。要考虑的系统包括齐次系统和捕获系统,或者是连续的,或者是在晶格上的。感兴趣的问题涉及,例如,玻色/费米混合物,低维系统,快速旋转的气体,以及晶格系统的超流动性。此外,还将研究费米子对的Bardeen-Cooper-Schrieffer理论,以进一步提高对具有一般相互作用的费米子系统的低温行为的理解。更广泛的影响。该项目的目标是开发新的数学工具来处理多体量子系统中的复杂问题。新的数学方法导致不同的观点,从而可以增加对物理系统的理解。这些方法将被用于P.I.的物理研究生课程和其他课程。数学物理会议和学校的组织将传播这些强大方法的使用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Seiringer其他文献
Stability of Relativistic Matter with Magnetic Fields for Nuclear Charges up to the Critical Value
- DOI:
10.1007/s00220-007-0307-2 - 发表时间:
2007-07-31 - 期刊:
- 影响因子:2.600
- 作者:
Rupert L. Frank;Elliott H. Lieb;Robert Seiringer - 通讯作者:
Robert Seiringer
Two-particle bound states at interfaces and corners
界面和角落处的双粒子束缚态
- DOI:
10.1016/j.jfa.2022.109455 - 发表时间:
2022-06-15 - 期刊:
- 影响因子:1.600
- 作者:
Barbara Roos;Robert Seiringer - 通讯作者:
Robert Seiringer
BCS Critical Temperature on Half-Spaces
- DOI:
10.1007/s00205-025-02088-x - 发表时间:
2025-03-02 - 期刊:
- 影响因子:2.400
- 作者:
Barbara Roos;Robert Seiringer - 通讯作者:
Robert Seiringer
The Thermodynamic Pressure of a Dilute Fermi Gas
- DOI:
10.1007/s00220-005-1433-3 - 发表时间:
2005-10-10 - 期刊:
- 影响因子:2.600
- 作者:
Robert Seiringer - 通讯作者:
Robert Seiringer
Atoms with Bosonic "Electronis" in Strong Magnetic Fields
- DOI:
10.1007/pl00001032 - 发表时间:
2001-02-01 - 期刊:
- 影响因子:1.300
- 作者:
Bernhard Baumgartner;Robert Seiringer - 通讯作者:
Robert Seiringer
Robert Seiringer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Seiringer', 18)}}的其他基金
Mathematical Analysis of Interacting Quantum Gases
相互作用的量子气体的数学分析
- 批准号:
0652356 - 财政年份:2007
- 资助金额:
$ 40.01万 - 项目类别:
Continuing Grant
Mathematical Analysis of Interacting Bose Gases
相互作用的玻色气体的数学分析
- 批准号:
0353181 - 财政年份:2004
- 资助金额:
$ 40.01万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Design and Analysis of Low-Overhead Fault-Tolerant Quantum Circuits
职业:低开销容错量子电路的设计和分析
- 批准号:
2237356 - 财政年份:2023
- 资助金额:
$ 40.01万 - 项目类别:
Continuing Grant
Analysis of problems for post-quantum cryptography
后量子密码学问题分析
- 批准号:
23K11098 - 财政年份:2023
- 资助金额:
$ 40.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of an efficient method combining quantum chemistry and machine learning to evolve PCR technology and gene mutation analysis
开发一种结合量子化学和机器学习的有效方法来发展 PCR 技术和基因突变分析
- 批准号:
22KJ2450 - 财政年份:2023
- 资助金额:
$ 40.01万 - 项目类别:
Grant-in-Aid for JSPS Fellows
New developments on quantum information analysis by a stochastic analysis based on theory of spaces consisting of generalized functionals
基于广义泛函空间理论的随机分析量子信息分析新进展
- 批准号:
23K03139 - 财政年份:2023
- 资助金额:
$ 40.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development and spectral analysis of an ensemble machine learning model using quantum chemical descriptors
使用量子化学描述符的集成机器学习模型的开发和光谱分析
- 批准号:
23K04678 - 财政年份:2023
- 资助金额:
$ 40.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Model Reduction Methods for Extended Quantum Systems: Analysis and Applications
扩展量子系统的模型简化方法:分析与应用
- 批准号:
2350325 - 财政年份:2023
- 资助金额:
$ 40.01万 - 项目类别:
Continuing Grant
Spectral analysis of quantum graphs and its application to quantum expanders
量子图谱分析及其在量子扩展器中的应用
- 批准号:
23KJ1270 - 财政年份:2023
- 资助金额:
$ 40.01万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Chemical Analysis of Quantum Dot Surfaces and Solutions
量子点表面和溶液的化学分析
- 批准号:
10060948 - 财政年份:2023
- 资助金额:
$ 40.01万 - 项目类别:
Collaborative R&D
Asymptotic Analysis of Almost-Periodic Operators of Quantum Mechanics
量子力学准周期算子的渐近分析
- 批准号:
2306327 - 财政年份:2023
- 资助金额:
$ 40.01万 - 项目类别:
Standard Grant
SBIR TOPIC 425 PHASE I: POSTURE ANALYSIS THROUGH MACHINE LEARNING (PATHML)
SBIR 主题 425 第一阶段:通过机器学习进行姿势分析 (PATHML)
- 批准号:
10931985 - 财政年份:2023
- 资助金额:
$ 40.01万 - 项目类别: