Mathematical Analysis of Interacting Bose Gases

相互作用的玻色气体的数学分析

基本信息

  • 批准号:
    0353181
  • 负责人:
  • 金额:
    $ 13.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-06-01 至 2008-05-31
  • 项目状态:
    已结题

项目摘要

Mathematical Analysis of Interacting Bose Gases" by R. Seiringer The main focus of this project is the continuation of the author's research in the mathematical analysis of the low-temperature properties of an interacting Bose gas, with special attention on the phenomenon of Bose-Einstein condensation. Motivated by recent experimental breakthroughs in the treatment of dilute Bose gases, which led to Nobel prize awards in 2001, there has been a lot of progress in this field in the last few years. Partly in joint work with E.H. Lieb and J. Yngvason it was possible to rigorously prove the existence of Bose-Einstein condensation, superfluidity and other phenomena like one-dimensional behavior of trapped gases in highly elongated traps, starting from the basic Schroedinger equation. With the help of developing the necessary mathematical tools it was possible to gain considerable physical insight into these phenomena. There are a lot of open problems, however, that are planned to be addressed within this project. Among them are the proof of Bose-Einstein condensation for infinite (in contrast to trapped) systems, behavior of rotating systems and vortices, mixtures of Bose and Fermi gases, etc. These problems are interesting both from a mathematical and physical point of view, being of a complex nature that brings about the need for new mathematical ideas, and being closely related to properties of systems studied for the first time in current experiments which can be expected to yield further fascinating results within the near future. Progress in the mathematical analysis of these phenomena will certainly yield further insight into the complex physics that is going on in interacting bosonic systems at very low temperature. Other fields of research that the author would like to study within this project include the Pauli-Fierz model of non-relativistic Quantum Electro-dynamics, the Bessis-Moussa-Villani conjecture about traces of positive matrices, and classical models of Quark confinement.
R. Seiringer 的“相互作用玻色气体的数学分析” 该项目的主要重点是作者对相互作用玻色气体的低温特性的数学分析研究的延续,特别关注玻色-爱因斯坦凝聚现象。受最近稀玻色气体处理实验突破的推动,该领域获得了 2001 年诺贝尔奖。 在过去的几年里。部分与 E.H. 合作Lieb 和 J. Yngvason 从基本的薛定谔方程开始,可以严格证明玻色-爱因斯坦凝聚、超流性和其他现象的存在,例如高度细长陷阱中捕获气体的一维行为。在开发必要的数学工具的帮助下,可以获得对这些现象的大量物理洞察。有一个 然而,计划在该项目中解决许多未解决的问题。其中包括无限(与俘获)系统的玻色-爱因斯坦凝聚的证明、旋转系统和涡流的行为、玻色和费米气体的混合物等。这些问题从数学和物理的角度来看都很有趣,其性质复杂,需要新的数学思想,并且与所研究的系统的性质密切相关 在当前的实验中这是第一次,预计在不久的将来会产生更多令人兴奋的结果。对这些现象的数学分析的进展肯定会进一步深入了解极低温度下相互作用的玻色子系统中正在发生的复杂物理现象。作者希望在该项目中研究的其他研究领域包括非相对论量子电动力学的 Pauli-Fierz 模型、Bessis-Moussa-Villani 关于正矩阵迹的猜想和夸克禁闭的经典模型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Seiringer其他文献

Stability of Relativistic Matter with Magnetic Fields for Nuclear Charges up to the Critical Value
  • DOI:
    10.1007/s00220-007-0307-2
  • 发表时间:
    2007-07-31
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Rupert L. Frank;Elliott H. Lieb;Robert Seiringer
  • 通讯作者:
    Robert Seiringer
Two-particle bound states at interfaces and corners
界面和角落处的双粒子束缚态
  • DOI:
    10.1016/j.jfa.2022.109455
  • 发表时间:
    2022-06-15
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Barbara Roos;Robert Seiringer
  • 通讯作者:
    Robert Seiringer
BCS Critical Temperature on Half-Spaces
The Thermodynamic Pressure of a Dilute Fermi Gas
Atoms with Bosonic "Electronis" in Strong Magnetic Fields
  • DOI:
    10.1007/pl00001032
  • 发表时间:
    2001-02-01
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Bernhard Baumgartner;Robert Seiringer
  • 通讯作者:
    Robert Seiringer

Robert Seiringer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Seiringer', 18)}}的其他基金

CAREER: Analysis of quantum many body systems
职业:量子多体系统分析
  • 批准号:
    0845292
  • 财政年份:
    2009
  • 资助金额:
    $ 13.11万
  • 项目类别:
    Continuing Grant
Mathematical Analysis of Interacting Quantum Gases
相互作用的量子气体的数学分析
  • 批准号:
    0652356
  • 财政年份:
    2007
  • 资助金额:
    $ 13.11万
  • 项目类别:
    Continuing Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
  • 批准号:
    41601604
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
  • 批准号:
    31100958
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
  • 批准号:
    30470153
  • 批准年份:
    2004
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

Mathematical and Computational Modelling for Nuclear Criticality Safety Analysis and Assessment of Interacting Arrays of Loosely Coupled Systems
松耦合系统相互作用阵列核临界安全分析和评估的数学和计算模型
  • 批准号:
    2461946
  • 财政年份:
    2020
  • 资助金额:
    $ 13.11万
  • 项目类别:
    Studentship
Analysis of transcription factors interacting with UV-B receptor, UVR8, in Marchantia
地钱中与 UV-B 受体 UVR8 相互作用的转录因子分析
  • 批准号:
    20K12169
  • 财政年份:
    2020
  • 资助金额:
    $ 13.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Large deviation analysis of interacting systems of Brownian motions and random interlacements at positive temperature
正温度下布朗运动和随机交错相互作用系统的大偏差分析
  • 批准号:
    2273598
  • 财政年份:
    2019
  • 资助金额:
    $ 13.11万
  • 项目类别:
    Studentship
Functional analysis of layilin by identification of layilin-interacting proteins using proximity-dependent biotin identification
通过使用邻近依赖性生物素鉴定来鉴定莱伊林相互作用蛋白,对莱伊林进行功能分析
  • 批准号:
    19K15752
  • 财政年份:
    2019
  • 资助金额:
    $ 13.11万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Identification of multidrug resistance factors by analysis of Hsp70-interacting proteins
通过分析 Hsp70 相互作用蛋白鉴定多药耐药因素
  • 批准号:
    19K16506
  • 财政年份:
    2019
  • 资助金额:
    $ 13.11万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Synthesis and Functional Analysis of Metal-Interacting Natural Products based on Library Strategy
基于文库策略的金属相互作用天然产物的合成与功能分析
  • 批准号:
    19K15704
  • 财政年份:
    2019
  • 资助金额:
    $ 13.11万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Complex interacting networks and systems: Models, analysis, and algorithms
复杂的交互网络和系统:模型、分析和算法
  • 批准号:
    RGPIN-2015-05218
  • 财政年份:
    2019
  • 资助金额:
    $ 13.11万
  • 项目类别:
    Discovery Grants Program - Individual
Identification and analysis of novel mTOR-interacting protein
新型 mTOR 相互作用蛋白的鉴定和分析
  • 批准号:
    18K06478
  • 财政年份:
    2018
  • 资助金额:
    $ 13.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Algorithm Development and Analysis for Non-Newtonian Fluids Interacting with Elastic and Poroelastic Structures
非牛顿流体与弹性和多孔弹性结构相互作用的算法开发和分析
  • 批准号:
    1818842
  • 财政年份:
    2018
  • 资助金额:
    $ 13.11万
  • 项目类别:
    Standard Grant
Complex interacting networks and systems: Models, analysis, and algorithms
复杂的交互网络和系统:模型、分析和算法
  • 批准号:
    RGPIN-2015-05218
  • 财政年份:
    2018
  • 资助金额:
    $ 13.11万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了