Mathematical Analysis of Interacting Quantum Gases
相互作用的量子气体的数学分析
基本信息
- 批准号:0652356
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-08-01 至 2009-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The main focus of this research project is the mathematical analysis of many-body quantum systems, in particular, interacting quantum gases at low temperature. The recent experimental advances in studying ultra-cold atomic gases have led to renewed interest in these systems. They display a rich variety of quantum phenomena, including, e.g., Bose-Einstein condensation and superfluidity, which makes them interesting both from a physical and a mathematical point of view.Intellectual Merit. From the point of view of mathematical physics, there has been substantial progress in the last few years in understanding some interesting phenomena occurring in quantum gases, and the goal of this project is to further investigate some of the relevant issues. Due to the complex nature of the problems, new mathematical ideas and methods will have to be developed for this purpose. Progress along these lines can be expected to yield valuable insight into the complex behavior of many-body quantum systems at low temperature. Among the questions that are addressed in this project are bounds on the free energy of quantum gases at low density and low temperature, as well as qualitative and quantitative statements about the corresponding thermalequilibrium states. The systems to be considered include both homogeneous and trapped systems, either continuous or on a lattice. The questions of interest concern, e.g., Bose/Fermi mixtures, low dimensional systems, rapidly rotating gases, as well as superfluidity for lattice systems. Moreover, the jellium model for gases of charged particles will be investigated, with the goal of further increasing the understanding of charged systems with Coulomb interaction.Broader Impact. The goal of this project is the development of new mathematicaltools for dealing with complex problems in many-body quantum systems. New mathematical methods lead to different points of view and can thus increase the understanding of physical systems. These methods will be useful, and will be used in physics graduate courses of the P.I. and others.
本课题的主要研究重点是多体量子系统的数学分析,特别是低温下量子气体的相互作用。最近在研究超冷原子气体方面的实验进展重新引起了人们对这些系统的兴趣。它们展示了丰富多样的量子现象,包括玻色-爱因斯坦凝聚和超流,这使得它们从物理和数学的角度都很有趣。从数学物理的角度来看,过去几年在理解量子气体中发生的一些有趣现象方面取得了实质性进展,该项目的目标是进一步研究一些相关问题。由于问题的复杂性,必须为此目的开发新的数学思想和方法。这些方面的进展有望为低温下多体量子系统的复杂行为提供有价值的见解。在这个项目中涉及的问题包括低密度和低温下量子气体的自由能的界限,以及关于相应的热平衡状态的定性和定量陈述。所考虑的系统既包括均匀系统,也包括连续的或格子上的捕获系统。感兴趣的问题包括玻色/费米混合物、低维体系、快速旋转的气体以及晶格体系的超流性。此外,还将研究带电粒子气体的凝胶模型,目的是进一步加深对具有库仑相互作用的带电系统的理解。这个项目的目标是开发新的数学工具来处理多体量子系统中的复杂问题。新的数学方法产生了不同的观点,因此可以增加对物理系统的理解。这些方法将是有用的,并将在P.I.和其他机构的物理研究生课程中使用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Seiringer其他文献
Stability of Relativistic Matter with Magnetic Fields for Nuclear Charges up to the Critical Value
- DOI:
10.1007/s00220-007-0307-2 - 发表时间:
2007-07-31 - 期刊:
- 影响因子:2.600
- 作者:
Rupert L. Frank;Elliott H. Lieb;Robert Seiringer - 通讯作者:
Robert Seiringer
Two-particle bound states at interfaces and corners
界面和角落处的双粒子束缚态
- DOI:
10.1016/j.jfa.2022.109455 - 发表时间:
2022-06-15 - 期刊:
- 影响因子:1.600
- 作者:
Barbara Roos;Robert Seiringer - 通讯作者:
Robert Seiringer
BCS Critical Temperature on Half-Spaces
- DOI:
10.1007/s00205-025-02088-x - 发表时间:
2025-03-02 - 期刊:
- 影响因子:2.400
- 作者:
Barbara Roos;Robert Seiringer - 通讯作者:
Robert Seiringer
The Thermodynamic Pressure of a Dilute Fermi Gas
- DOI:
10.1007/s00220-005-1433-3 - 发表时间:
2005-10-10 - 期刊:
- 影响因子:2.600
- 作者:
Robert Seiringer - 通讯作者:
Robert Seiringer
Atoms with Bosonic "Electronis" in Strong Magnetic Fields
- DOI:
10.1007/pl00001032 - 发表时间:
2001-02-01 - 期刊:
- 影响因子:1.300
- 作者:
Bernhard Baumgartner;Robert Seiringer - 通讯作者:
Robert Seiringer
Robert Seiringer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Seiringer', 18)}}的其他基金
CAREER: Analysis of quantum many body systems
职业:量子多体系统分析
- 批准号:
0845292 - 财政年份:2009
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Mathematical Analysis of Interacting Bose Gases
相互作用的玻色气体的数学分析
- 批准号:
0353181 - 财政年份:2004
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Mathematical and Computational Modelling for Nuclear Criticality Safety Analysis and Assessment of Interacting Arrays of Loosely Coupled Systems
松耦合系统相互作用阵列核临界安全分析和评估的数学和计算模型
- 批准号:
2461946 - 财政年份:2020
- 资助金额:
$ 12万 - 项目类别:
Studentship
Analysis of transcription factors interacting with UV-B receptor, UVR8, in Marchantia
地钱中与 UV-B 受体 UVR8 相互作用的转录因子分析
- 批准号:
20K12169 - 财政年份:2020
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Large deviation analysis of interacting systems of Brownian motions and random interlacements at positive temperature
正温度下布朗运动和随机交错相互作用系统的大偏差分析
- 批准号:
2273598 - 财政年份:2019
- 资助金额:
$ 12万 - 项目类别:
Studentship
Functional analysis of layilin by identification of layilin-interacting proteins using proximity-dependent biotin identification
通过使用邻近依赖性生物素鉴定来鉴定莱伊林相互作用蛋白,对莱伊林进行功能分析
- 批准号:
19K15752 - 财政年份:2019
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Identification of multidrug resistance factors by analysis of Hsp70-interacting proteins
通过分析 Hsp70 相互作用蛋白鉴定多药耐药因素
- 批准号:
19K16506 - 财政年份:2019
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Synthesis and Functional Analysis of Metal-Interacting Natural Products based on Library Strategy
基于文库策略的金属相互作用天然产物的合成与功能分析
- 批准号:
19K15704 - 财政年份:2019
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Complex interacting networks and systems: Models, analysis, and algorithms
复杂的交互网络和系统:模型、分析和算法
- 批准号:
RGPIN-2015-05218 - 财政年份:2019
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
Identification and analysis of novel mTOR-interacting protein
新型 mTOR 相互作用蛋白的鉴定和分析
- 批准号:
18K06478 - 财政年份:2018
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algorithm Development and Analysis for Non-Newtonian Fluids Interacting with Elastic and Poroelastic Structures
非牛顿流体与弹性和多孔弹性结构相互作用的算法开发和分析
- 批准号:
1818842 - 财政年份:2018
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Complex interacting networks and systems: Models, analysis, and algorithms
复杂的交互网络和系统:模型、分析和算法
- 批准号:
RGPIN-2015-05218 - 财政年份:2018
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual