CAREER: Enhanced Catalytic Phenomena via Surface Plasmon Resonant Excitation

职业:通过表面等离子共振激发增强催化现象

基本信息

  • 批准号:
    0846725
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-01 至 2014-07-31
  • 项目状态:
    已结题

项目摘要

0846725 Cronin This proposal is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).Prof. Stephen Cronin at the University of Southern California is supported by the Division of Chemical, Bioengineering, Environmental, and Transport Systems in the Engineering Directorate (with co-funding from the Division of Chemistry in the Directorate for Mathematics and Physical Sciences) to develop an understanding of the effect of plasmon resonance on catalytic performance. Two main postulates will be explored: (i) the effect of plasmon-induced electric field on chemical activity, and (ii) the effect of plasmon-induced heating on catalysis. Approach: The PI will produce arrays of metal nanostructures on top of and embedded in both active (e.g., TiO2) and non-active supports. Irradiating these plasmonic/catalytic nanostructures with a laser at their plasmon resonance frequency will generate immense plasmonic charge and high temperatures needed to drive the catalytic process. The plasmon-induced charge is orders of magnitude larger than that created by standard optical absorption and therefore has the potential to dramatically improve the efficiency of these catalytic processes. Also, the local heating of the nanoparticles generates large temperature gradients, which in turn create new pathways by allowing different chemical processes to occur side by side. The catalytic activity of these samples will be studied in an automated micro-reactor system that rapidly evaluates catalytic nanostructures and permits thousands of experimental conditions to be tested on a single chip. The system measures in situ diagnostics of the reaction byproducts using mass spectrometry and Raman spectroscopy, allowing direct correlation between structural properties and catalytic performance. High throughput screening of various catalytic and geometric configurations will enable us to investigate several fundamental questions about the enhanced catalytic mechanism. Fundamental Questions Addressed in this Proposal: - Is the catalytic enhancement heat mediated, electric field mediated, or otherwise? - What is the role/importance of the large temperature gradients created by nanoplasmonic heating? - How does the bandgap energy and doping level affect the catalytic activity? - What is the critical thickness of the metal oxide film that enables the plasmon-induced charge to diffuse to the catalytic surface? - How does surface binding of reactants, byproducts, and free radicals affect the catalytic activity and selectivity? - What is the theoretical optimum enhancement in catalytic activity achievable through surface plasmon resonant excitation? The intellectual merit is to expand the understanding and applicability of plasmonic processes into the field of chemistry. By systematically addressing these fundamental questions, the PI will be able to identify which particular aspects of the plasmon enhancement will be most useful and which chemical reactions will benefit most from it. The area of plasmon assisted catalysis is rich with new and interesting phenomena that remain poorly understood. Plasmonic excitation opens up additional degrees of freedom in the search for new chemical pathways, for example, for the production of tricyclic ozone. The systematic studies put forth in this proposal will likely provide an understanding of unexplored catalytic phenomena and introduce novel concepts that are widely applicable to the larger scientific community. Broader Impacts: The outreach program to Los Angeles area high school teachers will expose underrepresented students to the results and, more importantly, the excitement of this proposed research and other cutting-edge research at universities in the Los Angeles area. In this effort, the PI will develop a long-term, working relationship between USC and its neighboring high schools. Research projects for undergraduate students will introduce them to the creative and intuitive nature of scientific research, thereby giving them the confidence and inspiration to pursue careers in science and engineering. The novel curriculum, which integrates creativity into a new nanoscience course, will produce skilled and knowledgeable students able to address the next generation of challenges in nanotechnology. The general scheme of incorporating in-class brainstorming sessions into traditionally technical curriculum can be applied to a wide range of subjects in the physical sciences and engineering. The importance of catalysis in modern industrial chemistry cannot be overstated, impacting nearly every aspect of our economy. The successful completion of this proposed work will lead to a number of future studies with scientific and industrial relevance. The improved catalytic processes investigated herein may be applicable to other fields of science and engineering to enhance various important chemical and electrochemical phenomena. Alternatively, these plasmonic nanoparticles can be incorporated onto a chip to drive endothermic reactions with sunlight for energy storage. The localized nature of plasmonic heating and electric field enhancement is ideal for creating an integrated fuel source for hydrogen and methane fuel cells, without having to heat up the entire device. In the face of the global energy crisis, this work will provide new inroads in the critical search for novel and efficient chemical processes.
0846725克罗宁这项提案是根据2009年《美国复苏和再投资法案》(公法第111-5号)提供资金的。南加州大学的斯蒂芬·克罗宁得到了工程局化学、生物工程、环境和运输系统部的支持(数学和物理科学局化学部的共同资助),以加深对等离子体共振对催化性能影响的理解。我们将探讨两个主要假设:(I)等离子体诱导电场对化学活性的影响;(Ii)等离子体诱导加热对催化的影响。方法:PI将在活性载体(例如,二氧化钛)和非活性载体上形成金属纳米结构阵列,并嵌入其中。用等离子体共振频率的激光照射这些等离子体/催化纳米结构将产生巨大的等离子体电荷和推动催化过程所需的高温。等离子体激元诱导的电荷比标准光吸收产生的电荷大几个数量级,因此有可能极大地提高这些催化过程的效率。此外,纳米颗粒的局部加热会产生很大的温度梯度,这反过来又会通过允许不同的化学过程并排发生而创造出新的途径。这些样品的催化活性将在自动微反应系统中进行研究,该系统可以快速评估催化纳米结构,并允许在单个芯片上测试数千个实验条件。该系统使用质谱学和拉曼光谱测量反应副产物的现场诊断,允许结构特性和催化性能之间的直接关联。高通量筛选各种催化构型和几何构型将使我们能够研究关于增强催化机理的几个基本问题。这个建议中涉及的基本问题是:-催化增强是热介导的,还是电场介导的?-纳米等离子体加热产生的大温度梯度的作用/重要性是什么?-带隙能量和掺杂水平如何影响催化活性?-使等离子体诱导的电荷扩散到催化表面的金属氧化物薄膜的临界厚度是多少?-反应物、副产物和自由基的表面结合如何影响催化活性和选择性?-通过表面等离子体共振激发可以实现的催化活性最佳增强是什么?其学术价值是将等离子体过程的理解和适用性扩展到化学领域。通过系统地解决这些基本问题,PI将能够确定等离子体增强的哪些特定方面将最有用,哪些化学反应将从中受益最大。等离子体辅助催化领域充满了新的和有趣的现象,但仍然知之甚少。等离子体激发在寻找新的化学途径方面开辟了更多的自由度,例如,用于生产三环臭氧。这项提案中提出的系统研究可能会提供对未探索的催化现象的理解,并引入广泛适用于更大科学界的新概念。更广泛的影响:洛杉矶地区高中教师的外展计划将使未被充分代表的学生接触到结果,更重要的是,这项拟议的研究和洛杉矶地区大学的其他尖端研究令人兴奋。在这一努力中,PI将在南加州大学与其邻近的高中之间发展长期的工作关系。本科生的研究项目将向他们介绍科学研究的创造性和直觉性,从而给他们在科学和工程领域追求职业的信心和灵感。这一新颖的课程将创造力融入到一门新的纳米科学课程中,将培养出有技能和知识的学生,能够应对下一代纳米技术的挑战。将课堂上的头脑风暴会议纳入传统的技术课程的总体方案可以应用于物理科学和工程的广泛科目。催化在现代工业化学中的重要性怎么强调都不为过,它几乎影响到我们经济的方方面面。这项拟议工作的圆满完成将导致今后进行一些具有科学和工业意义的研究。本文研究的改进的催化过程可应用于其他科学和工程领域,以增强各种重要的化学和电化学现象。或者,这些等离子体纳米粒子可以被整合到芯片上,以驱动与阳光的吸热反应,以储存能量。等离子体加热和电场增强的局部性是创建氢和甲烷燃料电池的集成燃料来源的理想选择,而不必加热整个设备。面对全球能源危机,这项工作将在寻找新的和高效的化学工艺方面取得新的进展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Cronin其他文献

Evidence for structural phase transitions and large effective band gaps in quasi-metallic ultra-clean suspended carbon nanotubes
准金属超净悬浮碳纳米管中结构相变和大有效带隙的证据
  • DOI:
    10.1007/s12274-013-0351-5
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    9.9
  • 作者:
    Shun-Wen Chang;Rohan Dhall;Moh Amer;Kentaro Sato;Riichiro Saito;Stephen Cronin
  • 通讯作者:
    Stephen Cronin

Stephen Cronin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Cronin', 18)}}的其他基金

Collaborative Research: Environmentally Sustainable Anode Materials for Electrochemical Energy Storage using Particulate Matter Waste from the Combustion of Fossil Fuels
合作研究:利用化石燃料燃烧产生的颗粒物废物进行电化学储能的环境可持续阳极材料
  • 批准号:
    2344723
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Exploring thermionic multiple barrier heterostructures and thermoelectric energy conversion using 2D layered heterostructures
合作研究:利用二维层状异质结构探索热离子多重势垒异质结构和热电能量转换
  • 批准号:
    2323031
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Charge State Conversion, Dynamics, and Single Photon Emission from Diamond using High Voltage Nanosecond Pulse Discharge
使用高压纳秒脉冲放电的金刚石电荷态转换、动力学和单光子发射
  • 批准号:
    2204667
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Plasma-enhanced Electrostatic Precipitation of Diesel Particulates using High Voltage Nanosecond Pulses
合作研究:使用高压纳秒脉冲对柴油颗粒进行等离子体增强静电沉淀
  • 批准号:
    2112898
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Detailed Mechanistic Pathways of Surface Catalysis using SERS Spectroscopy: A Joint Theoretical and Experimental Synergistic Approach
合作研究:使用 SERS 光谱的表面催化的详细机理路径:理论和实验联合协同方法
  • 批准号:
    2106480
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAS: Mechanistic Study of Reaction Intermediates in Nanoparticle-Enhanced Plasma-Assisted Catalysis
CAS:纳米粒子增强等离子体辅助催化反应中间体的机理研究
  • 批准号:
    1954834
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: In Situ Surface Spectroscopy of 2D Material-based Electrocatalysis and Photoelectrocatalysis
合作研究:二维材料电催化和光电催化的原位表面光谱
  • 批准号:
    2012845
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding Cross-plane and In-plane Transport in 2D Layered Heterostructures
合作研究:了解二维层状异质结构中的跨平面和面内传输
  • 批准号:
    1905357
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: A Mechanistic Study of Chemical Enhancement in Surface Enhanced Raman Spectroscopy and Graphene Enhanced Raman Spectroscopy
合作研究:表面增强拉曼光谱和石墨烯增强拉曼光谱化学增强的机理研究
  • 批准号:
    1708581
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
UNS:Novel Photocatalysts based on TiO2-Passivated III-V Compounds for CO2 Reduction
UNS:基于 TiO2 钝化 III-V 族化合物的新型光催化剂,用于 CO2 还原
  • 批准号:
    1512505
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似海外基金

Development of in situ ammonia capture for enhanced catalytic ammonia synthesis
开发用于增强催化氨合成的原位氨捕获
  • 批准号:
    24K17765
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Harnessing the chirality matching principle for enhanced catalytic reactivity
合作研究:利用手性匹配原理增强催化反应活性
  • 批准号:
    2247709
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: Harnessing the chirality matching principle for enhanced catalytic reactivity
合作研究:利用手性匹配原理增强催化反应活性
  • 批准号:
    2247710
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
NSF-DFG Echem: Electrochemically enhanced low-temperature catalytic ammonia synthesis
NSF-DFG Echem:电化学增强低温催化氨合成
  • 批准号:
    2140971
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Decentralised Ammonia production from Renewable Energy utilising novel sorption-enhanced plasma-catalytic Power-to-X technology
利用新型吸附增强等离子体催化 Power-to-X 技术从可再生能源中分散生产氨
  • 批准号:
    10055396
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    EU-Funded
Mechanism analysis of promotion of catalytic reaction in ionic liquid-modified electrodes by surface-enhanced infrared spectroscopy
表面增强红外光谱促进离子液体修饰电极催化反应的机理分析
  • 批准号:
    21K04664
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Catalytic Resonance-Enhanced Activation of Hydrocarbon Resources
职业:催化共振增强碳氢化合物资源活化
  • 批准号:
    2045953
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Development of a nano-catalytic in reservoir upgrading and enhanced recovery process for efficient extraction of conventional oil from extra-heavy oils and bitumen reservoirs
开发油藏升级和提高采收率工艺中的纳米催化技术,以从超稠油和沥青油藏中高效提取常规油
  • 批准号:
    499942-2016
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Collaborative Research and Development Grants
Development of a nano-catalytic in reservoir upgrading and enhanced recovery process for efficient extraction of conventional oil from extra-heavy oils and bitumen reservoirs
开发油藏升级和提高采收率工艺中的纳米催化技术,以从超稠油和沥青油藏中高效提取常规油
  • 批准号:
    499942-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Collaborative Research and Development Grants
Plasmon-Enhanced Catalytic Ozonation for Water Treatment and Reuse
用于水处理和再利用的等离激元增强催化臭氧化
  • 批准号:
    1606117
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了