3-D Optical Tracking of Bone Marrow Derived Skin Stem Cells

骨髓源性皮肤干细胞的 3D 光学追踪

基本信息

项目摘要

This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5)0852658 Boppart Skin is our largest organ, serving critical roles in fluid homeostasis, thermoregulation, immune surveillance, and self-healing. Disease and/or the loss of major portions of a human?s skin can be disabling and potentially life threatening, and is a major health problem in the U.S. and throughout the world. Stem cells play a critical role in repairing and regenerating many tissues, including the skin. Elucidating the roles that stem cells play in the skin will therefore have a significant impact on not only our fundamental understanding of stem cell dynamics, but also on our treatment of skin diseases, for replacing skin in medical applications, or in rejuvenating skin in our aging population. Recent advances in optical imaging techniques offer an unprecedented combination of high spatiotemporal imaging resolution that can now be applied to visualizing the complex three-dimensional (3-D) dynamics of skin stem cells within normal skin, and in response to skin injury and skin replacement, such as after grafting engineered skin replacements. The intellectual merit of this proposal is represented for the first time by an advanced optical biomedical imaging approach for elucidating the complex dynamics of skin stem cells in vivo and within engineered skin grafts. The hypothesis of this research is that optical coherence and multi-photon microscopy, in an integrated platform, can uniquely track and quantify the different dynamic 3-D in vivo stem cell behaviors in and around autologous and allogeneic engineered skin grafts. With the recent discovery of the skin stem cell niche located within the bulge region of hair follicles, many questions arise as to the dynamic behavior of these stem cells as they migrate from the bone marrow and into the skin niche, as well as in and out of the niche in response to skin injury and disease. This project therefore has intellectual merit in four areas. First, an advanced integrated microscope capable of simultaneous optical coherence and multi-photon microscopy will be utilized to uniquely visualize the structural and functional relationships of stem cells within in vivo skin. Second, this project investigates and longitudinally images in 3-D the migration patterns and dynamics of skin stem cells. This will provide fundamental insight into the role they play in maintaining the function and health of skin. Third, the effects of skin injury, induced by the placement of an autologous skin graft (skin punch biopsy), will be investigated, providing insight into the stem cell dynamics in the healing response. Fourth, this project will longitudinally image the stem cell and tissue responses in vivo following the grafting of allogeneic engineered skin constructs, contributing significantly to the understanding of how skin stem cells interact with engineered tissue grafts within biological hosts. The development and application of more quantitative imaging techniques to analyze the dynamics at the single-cell or cell-population levels will provide further insight into the ability to understand the role of skin stem cells, and ultimately provide a better approach for the treatment of human pathologies that require skin grafting. Taken together, this project is novel in each of these four areas, and the use of these advanced imaging techniques to carry out these investigations is transformative for the fields of stem cell biology and tissue engineering.Considering the broader scope, the outcome of this project is likely to have a significant and broad impact on both the fundamental and clinical understanding on how stem cells behave dynamically in vivo. This project addresses major challenges in stem cell biology and tissue engineering: how to visualize and track cells and small populations of cells in vivo, in 3-D, and longitudinally over time in highly-scattering engineered and natural tissues.This project will integrate state-of-the-art research with educational elements to advance discovery and promote teaching, training, and learning. Undergraduate students, in addition to graduate students, will complete theses related to this work. These students, as well as post-doctoral fellows and research scientists, will develop lifelong career skills in optics, image processing, cell and tissue culture and biology, and the use of pre-clinical models. Under-represented groups including women and minorities will be targeted for research opportunities, and annual laboratory and campus-wide open-house events will be held for outreach to K-12 and community groups. The results and image databases from this project will be disseminated widely through our educational website, local and national conferences, and leading scientific, engineering, and medical publications.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)0852658 Boppart皮肤是我们最大的器官,在流体稳态,体温调节,免疫监视和自我修复中发挥关键作用。疾病和/或人类主要部分的损失?的皮肤可能致残和潜在的生命威胁,是一个主要的健康问题,在美国和世界各地。干细胞在修复和再生包括皮肤在内的许多组织中起着关键作用。因此,阐明干细胞在皮肤中发挥的作用将不仅对我们对干细胞动力学的基本理解产生重大影响,而且对我们治疗皮肤病,在医疗应用中替代皮肤,或在我们老龄化人口中恢复皮肤活力产生重大影响。光学成像技术的最新进展提供了高时空成像分辨率的前所未有的组合,其现在可以应用于可视化正常皮肤内的皮肤干细胞的复杂三维(3-D)动态,以及响应皮肤损伤和皮肤置换,例如移植工程皮肤置换后。这一建议的智力优点是代表第一次由一个先进的光学生物医学成像方法,阐明复杂的动态皮肤干细胞在体内和工程皮肤移植。这项研究的假设是,光学相干和多光子显微镜,在一个集成的平台,可以独特地跟踪和量化不同的动态3-D体内干细胞的行为和周围的自体和异体工程皮肤移植。随着最近发现的皮肤干细胞生态位位于毛囊的隆起区域内,许多问题出现了这些干细胞的动态行为,因为它们从骨髓迁移到皮肤生态位,以及响应皮肤损伤和疾病进出生态位。因此,该项目在四个领域具有知识价值。首先,一个先进的集成显微镜能够同时光学相干和多光子显微镜将被用来独特地可视化干细胞在体内皮肤的结构和功能的关系。其次,本项目研究并纵向成像在3-D的迁移模式和动态的皮肤干细胞。这将为他们在维护皮肤功能和健康方面发挥的作用提供基本的见解。第三,将研究由自体皮肤移植物(皮肤穿刺活检)的放置引起的皮肤损伤的影响,从而深入了解愈合反应中的干细胞动力学。第四,该项目将纵向成像干细胞和组织反应在体内移植同种异体工程皮肤构建体后,显着有助于了解皮肤干细胞如何与生物宿主内的工程组织移植物相互作用。开发和应用更多的定量成像技术来分析单细胞或细胞群体水平的动态,将进一步深入了解皮肤干细胞的作用,并最终为治疗需要皮肤移植的人类病理提供更好的方法。总的来说,这个项目在这四个领域都是新颖的,并且使用这些先进的成像技术来进行这些研究对于干细胞生物学和组织工程领域是变革性的。考虑到更广泛的范围,这个项目的结果很可能对干细胞在体内动态行为的基础和临床理解产生重大而广泛的影响。该项目解决了干细胞生物学和组织工程领域的主要挑战:如何在体内、三维和纵向追踪高度分散的工程组织和自然组织中的细胞和小群体细胞。该项目将把最先进的研究与教育元素相结合,以促进发现和促进教学、培训和学习。本科生,除了研究生,将完成与这项工作有关的论文。这些学生,以及博士后研究员和研究科学家,将开发光学,图像处理,细胞和组织培养和生物学,以及临床前模型的使用终身职业技能。包括妇女和少数民族在内的代表性不足的群体将成为研究机会的目标,每年的实验室和校园开放活动将为K-12和社区团体提供服务。该项目的结果和图像数据库将通过我们的教育网站、地方和国家会议以及领先的科学、工程和医学出版物广泛传播。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Boppart其他文献

Stephen Boppart的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Boppart', 18)}}的其他基金

I-Corps: High Content Label Free Imaging of Tissue using a Novel Laser Source
I-Corps:使用新型激光源对组织进行高内涵无标签成像
  • 批准号:
    1931891
  • 财政年份:
    2019
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Standard Grant
EAGER: Optical Molecular Imaging of Opioid Distribution and its Metabolic Effects in the Brain
EAGER:阿片类药物分布及其在大脑中代谢作用的光学分子成像
  • 批准号:
    1841539
  • 财政年份:
    2018
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Standard Grant
REU Site: Discoveries in Bioimaging
REU 网站:生物成像的发现
  • 批准号:
    1461038
  • 财政年份:
    2015
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Standard Grant
BRAIN EAGER: Spatially-Resolved In Vivo Optogenetic Stimulation and Imaging Platform
BRAIN EAGER:空间分辨体内光遗传学刺激和成像平台
  • 批准号:
    1450829
  • 财政年份:
    2014
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Standard Grant
EAGER: Smart Phone Platform for Personal High-Resolution 3D Optical Imaging
EAGER:用于个人高分辨率 3D 光学成像的智能手机平台
  • 批准号:
    1445111
  • 财政年份:
    2014
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Standard Grant
Enhanced Optogenetic Control of Neuronal Activity with Tailored Light Stimuli
通过定制光刺激增强神经元活动的光遗传学控制
  • 批准号:
    1403660
  • 财政年份:
    2014
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Standard Grant
Lasers in Medicine and Biology: From Basic Science Discovery to Translational Applications
激光在医学和生物学中的应用:从基础科学发现到转化应用
  • 批准号:
    1401072
  • 财政年份:
    2014
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Standard Grant
I-Corps: Optimized OCT-Video Imaging in a Handheld Scanning Otoscope
I-Corps:手持式扫描耳镜中优化的 OCT 视频成像
  • 批准号:
    1445170
  • 财政年份:
    2014
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Standard Grant
Advanced Optical Imaging of 3-D Cell Dynamics in Engineered Skin
工程皮肤 3D 细胞动力学的先进光学成像
  • 批准号:
    1033906
  • 财政年份:
    2010
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Continuing Grant
MRI: Acquisition of a Molecular Imaging Instrument for Dynamic Material and Biological Systems
MRI:获取用于动态材料和生物系统的分子成像仪器
  • 批准号:
    0922539
  • 财政年份:
    2009
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Standard Grant

相似国自然基金

基于非结构化网格Front Tracking方法的复杂流动区域弹性界面液滴动力学研究
  • 批准号:
    52006188
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
面向矿区地表大形变的PSI/DInSAR与Offset-tracking深度融合方法研究
  • 批准号:
    51804297
  • 批准年份:
    2018
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
非规则网格的front tracking 方法研究与程序实现
  • 批准号:
    11176015
  • 批准年份:
    2011
  • 资助金额:
    40.0 万元
  • 项目类别:
    联合基金项目
多流体ALE模式下Front tracking 界面追踪法研究
  • 批准号:
    10901022
  • 批准年份:
    2009
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Capacity Assessment, Tracking, & Enhancement through Network Analysis: Developing a Tool to Inform Capacity Building Efforts in Complex STEM Education Systems
能力评估、跟踪、
  • 批准号:
    2315532
  • 财政年份:
    2024
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Standard Grant
Ultrafast tracking of physiological processes in the human eye
超快速跟踪人眼的生理过程
  • 批准号:
    DP240103352
  • 财政年份:
    2024
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Discovery Projects
Tracking flood waters over Australia using space gravity data
使用空间重力数据跟踪澳大利亚的洪水
  • 批准号:
    DP240102399
  • 财政年份:
    2024
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Discovery Projects
Combining eye-tracking and comparative judgments to identify proficiency differences for more effective language learning
结合眼动追踪和比较判断来识别熟练程度差异,以实现更有效的语言学习
  • 批准号:
    24K16140
  • 财政年份:
    2024
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Exploitation of High Voltage CMOS sensors for tracking applications in physics experiments and beyond
利用高压 CMOS 传感器跟踪物理实验及其他领域的应用
  • 批准号:
    MR/X023834/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Fellowship
CAREER: Statistical foundations of particle tracking and trajectory inference
职业:粒子跟踪和轨迹推断的统计基础
  • 批准号:
    2339829
  • 财政年份:
    2024
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Continuing Grant
An Eye-Tracking Study: Exploring Integrated Reading Tasks in the New Format of the English Common Test for Japanese University Admissions
眼动追踪研究:探索日本大学入学英语通用考试新形式中的综合阅读任务
  • 批准号:
    24K04032
  • 财政年份:
    2024
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
TEXL: Tracking Excellence in Leadership
TEXL:追踪卓越领导力
  • 批准号:
    ES/Y010779/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Research Grant
Evaluating the Use of Machine Translation through Eye Tracking
通过眼动追踪评估机器翻译的使用
  • 批准号:
    24K04055
  • 财政年份:
    2024
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
AI-Powered Acoustic Monitoring for Scalable Biodiversity Tracking
人工智能驱动的声学监测可扩展生物多样性跟踪
  • 批准号:
    10107703
  • 财政年份:
    2024
  • 资助金额:
    $ 30.6万
  • 项目类别:
    Launchpad
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了