Enhanced Optogenetic Control of Neuronal Activity with Tailored Light Stimuli
通过定制光刺激增强神经元活动的光遗传学控制
基本信息
- 批准号:1403660
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-05-01 至 2017-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal Number: 1403660P.I.: Boppart, Stephen A. Title: Enhanced Optogenetic Control of Neuronal Activity with Tailored Light StimuliNon-Technical ExplanationSignificance:This project will investigate how new forms of light may enhance the electrical output and control of neurons that have been genetically modified to be light-sensitive. Optogenetics is a rapidly developing field that uses molecular biology techniques to enable cellular functions to be controlled with light. When neurons (nerve cells) are genetically modified to express a light-activated membrane channel, they can be made to trigger electrical activity when exposed to light. This new level of light-activated control over neuronal activity has yet to be fully exploited, but is offering new opportunities for understanding how neurons and their electrical circuits function within the brain to form thoughts, memories, behaviors, and emotions. In optical science and engineering, advances now make it possible to generate a wide range of new forms of light with customized properties, or what is called tailored light. This research is highly significant and important for the fields of neuroscience and biophotonics. Biophotonics is the science of how light interacts with biological cells and tissues, and neuroscientists seek to understand how the brain and mind work. The new optical sources for generating tailored light in this project will change the way in which we use optogenetics to investigate and understand the function of neurons, neural circuits, and the brain. This project is also highly interdisciplinary, and will provide a unique educational and training opportunity for undergraduate and graduate students to help them solve the complex interdisciplinary problems in engineering and biology in the future. Results from this research will also be integrated into undergraduate and graduate courses in biophotonics, neuroscience, and advanced microscopy. The long-term societal benefits of this research will include raising the public's scientific literacy of how neurons and neural circuits in our brain function, and how new types of light and lasers can be used to probe the complex functions of our brain.Technical DescriptionOptogenetics is a rapidly expanding field, and one that originated out of the field of neuroscience, where genetic modifications to mammalian neurons enabled photo-activated control of membrane channels to elicit action potentials. While this concept has provided a unique toolkit for exploring neuroscience questions and envisioning new medical science applications, there have been relatively few advances or contributions to optogenetics from the fields of optical science and engineering. This proposal addresses this gap by using advanced optical sources and precise control over the optical properties of the light stimuli to enhance the neural control in optogenetics.The innovation of this research project is the ability to generate new forms of tailored light, and apply this light as new forms of stimuli to excite, modulate, and control the output of optogenetically-modified neurons in new ways. Conceivably, it is much more practical to modify and control the light stimulus than to genetically modify the biological properties of cells and tissues. As optogenetics advances to in vivo applications, this practical advantage will be even more significant. Therefore, our hypothesis is that by precisely controlling the spectral, temporal, and spatial parameters of novel tailored light stimuli, it is possible to provide enhanced modulation and control of the electrical output activity of optogenetically-modified neurons. To prove our hypothesis, our research plan will be guided by three objectives. First, we will construct an optical stimulus and microscope system to generate these new forms of tailored light. Second, we will optically stimulate and electrically/optically record from cultured hippocampal neurons that have been genetically modified to express Channelrhodopsin-2, a light-gated membrane ion channel, to investigate how tailored light stimuli alters the electrical output and activity from these cells. Third, we will implement an optical feedback system that will measure the optical response of the neurons and adjust the light stimuli parameters to optimize, modulate, and control the electrical output.The successful outcome of this research project will have far-reaching impact in not only the field of biophotonics, but also in neuroscience and optical science and engineering. Just as optogenetics is expected to make a broad impact in neuroscience, as well as medical science, this research will potentially have an even greater and more rapid impact because it will conceivably be more practical to tailor the light stimulus than to modify the biology to enhance the optogenetic control in the future.This award is being made jointly by two Programs- (1) Biophotonics, in the Division of Chemical, Bioengineering, Environmental and Transport Systems (Engineering Directorate), and (2) Instrument Development for Biological Research, in the Division of Biological Infrastructure (Biological Sciences Directorate).
提案编号:1403660P.I.:Boppart,Stephen A. 标题:通过定制光刺激增强神经元活动的光遗传学控制非技术性解释意义:该项目将研究新形式的光如何增强经过基因改造的光敏感神经元的电输出和控制。 光遗传学是一个快速发展的领域,利用分子生物学技术使细胞功能能够通过光控制。 当神经元(神经细胞)经过基因改造以表达光激活膜通道时,它们可以在暴露于光时触发电活动。 这种对神经元活动的光激活控制的新水平尚未得到充分利用,但为理解神经元及其电路如何在大脑中发挥作用以形成思想、记忆、行为和情感提供了新的机会。 在光学科学和工程领域,现在的进步使得产生各种具有定制特性的新形式的光成为可能,或者所谓的定制光。 这项研究对于神经科学和生物光子学领域具有非常重要的意义。 生物光子学是研究光如何与生物细胞和组织相互作用的科学,神经科学家试图了解大脑和思维如何工作。 该项目中用于产生定制光的新光源将改变我们使用光遗传学研究和理解神经元、神经回路和大脑功能的方式。 该项目还具有很强的跨学科性,将为本科生和研究生提供独特的教育和培训机会,帮助他们解决未来工程和生物学领域复杂的跨学科问题。 这项研究的结果也将被纳入生物光子学、神经科学和高级显微镜学的本科生和研究生课程中。 这项研究的长期社会效益将包括提高公众对大脑中神经元和神经回路如何运作的科学素养,以及如何使用新型光和激光来探测我们大脑的复杂功能。技术描述光遗传学是一个快速发展的领域,起源于神经科学领域,在该领域,对哺乳动物神经元的基因改造使得光激活控制成为可能。 膜通道引发动作电位。 虽然这一概念为探索神经科学问题和设想新的医学科学应用提供了独特的工具包,但光学科学和工程领域对光遗传学的进展或贡献相对较少。 该提案通过使用先进的光源和对光刺激的光学特性的精确控制来增强光遗传学中的神经控制来解决这一差距。该研究项目的创新之处在于能够产生新形式的定制光,并将这种光作为新形式的刺激来以新的方式激发、调制和控制光遗传学修饰的神经元的输出。 可以想象,修改和控制光刺激比基因修改细胞和组织的生物学特性要实用得多。 随着光遗传学向体内应用发展,这种实际优势将更加显着。 因此,我们的假设是,通过精确控制新型定制光刺激的光谱、时间和空间参数,可以对光遗传学修饰的神经元的电输出活动提供增强的调制和控制。 为了证明我们的假设,我们的研究计划将遵循三个目标。 首先,我们将构建一个光学刺激和显微镜系统来产生这些新形式的定制光。 其次,我们将对培养的海马神经元进行光学刺激和电/光记录,这些神经元经过基因改造以表达视紫红质通道(Channelrhodopsin-2)(一种光门控膜离子通道),以研究定制的光刺激如何改变这些细胞的电输出和活动。 第三,我们将实现一个光学反馈系统,该系统将测量神经元的光学响应并调整光刺激参数以优化、调制和控制电输出。该研究项目的成功成果不仅在生物光子学领域,而且在神经科学和光学科学与工程领域都将产生深远的影响。 正如光遗传学预计将在神经科学和医学科学中产生广泛影响一样,这项研究也可能会产生更大、更迅速的影响,因为可以想象,定制光刺激比修改生物学以增强未来的光遗传学控制更为实用。该奖项由两个项目联合颁发——(1)生物光子学,属于化学、生物工程、环境和运输系统(工程)部门 (2) 生物基础设施司(生物科学理事会)的生物研究仪器开发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Boppart其他文献
Stephen Boppart的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Boppart', 18)}}的其他基金
I-Corps: High Content Label Free Imaging of Tissue using a Novel Laser Source
I-Corps:使用新型激光源对组织进行高内涵无标签成像
- 批准号:
1931891 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
EAGER: Optical Molecular Imaging of Opioid Distribution and its Metabolic Effects in the Brain
EAGER:阿片类药物分布及其在大脑中代谢作用的光学分子成像
- 批准号:
1841539 - 财政年份:2018
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
REU Site: Discoveries in Bioimaging
REU 网站:生物成像的发现
- 批准号:
1461038 - 财政年份:2015
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
BRAIN EAGER: Spatially-Resolved In Vivo Optogenetic Stimulation and Imaging Platform
BRAIN EAGER:空间分辨体内光遗传学刺激和成像平台
- 批准号:
1450829 - 财政年份:2014
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
EAGER: Smart Phone Platform for Personal High-Resolution 3D Optical Imaging
EAGER:用于个人高分辨率 3D 光学成像的智能手机平台
- 批准号:
1445111 - 财政年份:2014
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Lasers in Medicine and Biology: From Basic Science Discovery to Translational Applications
激光在医学和生物学中的应用:从基础科学发现到转化应用
- 批准号:
1401072 - 财政年份:2014
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
I-Corps: Optimized OCT-Video Imaging in a Handheld Scanning Otoscope
I-Corps:手持式扫描耳镜中优化的 OCT 视频成像
- 批准号:
1445170 - 财政年份:2014
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Advanced Optical Imaging of 3-D Cell Dynamics in Engineered Skin
工程皮肤 3D 细胞动力学的先进光学成像
- 批准号:
1033906 - 财政年份:2010
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
MRI: Acquisition of a Molecular Imaging Instrument for Dynamic Material and Biological Systems
MRI:获取用于动态材料和生物系统的分子成像仪器
- 批准号:
0922539 - 财政年份:2009
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
3-D Optical Tracking of Bone Marrow Derived Skin Stem Cells
骨髓源性皮肤干细胞的 3D 光学追踪
- 批准号:
0852658 - 财政年份:2009
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
相似海外基金
21ENGBIO A versatile optogenetic toolbox to control cell mechanics for cell and tissue morphogenesis
21ENGBIO 多功能光遗传学工具箱,用于控制细胞和组织形态发生的细胞力学
- 批准号:
BB/W011123/1 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Research Grant
Multiplexed Optogenetic Control of Mammalian Genome and Transcriptome using Recombinases and Cas13
使用重组酶和 Cas13 对哺乳动物基因组和转录组进行多重光遗传学控制
- 批准号:
10751791 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Optogenetic Control of Notch Signalling in vivo
体内Notch信号的光遗传学控制
- 批准号:
RGPIN-2018-06781 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Discovery Grants Program - Individual
Optogenetic toolkit for precise control of organellar calcium signaling
用于精确控制细胞器钙信号传导的光遗传学工具包
- 批准号:
10388807 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Optogenetic Control of Tumor Initiation and Tumor Progression in vivo
体内肿瘤发生和进展的光遗传学控制
- 批准号:
10640927 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Optogenetic stimulation of TMEM16F to control phospholipid flip-flop
TMEM16F 的光遗传学刺激控制磷脂触发器
- 批准号:
10601109 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Optogenetic Control of Tumor Initiation and Tumor Progression in vivo
体内肿瘤发生和进展的光遗传学控制
- 批准号:
10413468 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
New classes of optogenetic and chemogenetic tools with a feedback control
具有反馈控制的新型光遗传学和化学遗传学工具
- 批准号:
10469777 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Biophysical characterisation and design of optogenetic control elements
光遗传学控制元件的生物物理表征和设计
- 批准号:
2777745 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Studentship
Neuroelectronic and optogenetic stimulation for the precise control of corticospinal plasticity
用于精确控制皮质脊髓可塑性的神经电子和光遗传学刺激
- 批准号:
RGPIN-2017-06120 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




