FRG: Collaborative Research: Models of Balanced Multiscale Ocean Physics for Simulation and Parameterization

FRG:协作研究:用于模拟和参数化的平衡多尺度海洋物理模型

基本信息

  • 批准号:
    0854841
  • 负责人:
  • 金额:
    $ 11.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-07-01 至 2013-06-30
  • 项目状态:
    已结题

项目摘要

This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).The vast range of scales occurring in the Earth's climate system cannot be explicitly captured in global climate models, even on emerging petascale computers. This project will further understanding of the effects of physics at a scale that is too small to be resolved by models on the larger climate system by: 1) exploring potentially novel asymptotic expansions that provide reduced single-scale equations for each of the three important small-scale processes: convection, mesoscale eddies, and submesoscale eddies; 2) extending the asymptotic expansion technique to explicitly derive the coupling between small-scale regimes and large-scale flows; 3) developing state-of-the-art high-performance parallel codes to simulate the reduced single-scale and multiscale equations; 4) performing high-resolution simulations on high-performance computers; 5) analyzing the simulations to extend understanding of the behavior of each small-scale process, including flow dynamics, energetics, and transport properties; and 6) testing a range of existing parameterizations and superparameterizations of unresolved physics using eddy-resolving models to understand the scope and impact of our multiscale approach.The development of coupled asymptotic expansions to study multiscale phenomena has potential applications across many fields of science and engineering, in addition to the geosciences. This research is intended to demonstrate and apply the advantages of this approach to improve mathematical and computational study of the climate system. In geosciences, the asymptotic mathematical approach has long been used to improve computation--the first numerical weather forecasts were only possible because of the quasigeostrophic asymptotic expansion. The geosciences have long led asymptotic analysis as well, among the earliest examples of matched asymptotic expansions are studies of oceanic western boundary currents, such as the Gulf Stream and Kuroshio. Finally, the research is intended to directly improve climate models' representation of small-scale physics, which will aid our goals in improved forecasting and understanding of climate and mankind's influence on it.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。在全球气候模型中,即使是在新兴的千万亿计算机上,也无法明确地捕捉到地球气候系统中出现的各种尺度。该项目将通过以下方式进一步了解物理对大尺度气候系统的影响:1)探索潜在的新型渐近展开,为对流、中尺度涡旋和亚中尺度涡旋这三个重要的小尺度过程中的每一个提供简化的单尺度方程;2)扩展渐近展开技术,显式导出小尺度体系与大尺度体系之间的耦合;3)开发最先进的高性能并行代码来模拟简化的单尺度和多尺度方程;4)在高性能计算机上进行高分辨率模拟;5)分析模拟,以扩展对每个小规模过程行为的理解,包括fl低动力学、能量学和输运性质;6)使用涡流解析模型测试一系列现有的未解决物理的参数化和超参数化,以了解我们的多尺度方法的范围和影响。研究多尺度现象的耦合渐近展开的发展,除了在地球科学之外,在许多科学和工程领域都有潜在的应用。本研究旨在证明并应用该方法的优势,以改进气候系统的数学和计算研究。在地球科学中,渐近数学方法一直被用来改进计算——第一个数值天气预报是由于准等转渐近展开才成为可能的。地球科学长期以来也一直引领着渐近分析,最早的渐近扩展的例子是对海洋西部边界流的研究,如墨西哥湾流和黑潮。最后,该研究旨在直接改进气候模型对小尺度物理的表示,这将有助于我们提高对气候和人类对其影响的预测和理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Edgar Knobloch其他文献

Eckhaus instability and homoclinic snaking.
艾克豪斯不稳定性和同宿蛇行。
Solitary dynamo waves
  • DOI:
    10.1016/j.physleta.2006.02.013
  • 发表时间:
    2006-06-26
  • 期刊:
  • 影响因子:
  • 作者:
    Joanne Mason;Edgar Knobloch
  • 通讯作者:
    Edgar Knobloch
OPEN PROBLEM: Spatially localized structures in dissipative systems: open problems
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Edgar Knobloch
  • 通讯作者:
    Edgar Knobloch
Relaxation oscillations in a nearly inviscid Faraday system
Spatially localized magnetoconvection
空间局部磁对流
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. L. Jacono;A. Bergeon;Edgar Knobloch
  • 通讯作者:
    Edgar Knobloch

Edgar Knobloch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Edgar Knobloch', 18)}}的其他基金

Collaborative Research: Self-organization and transitions in anisotropic turbulence
合作研究:各向异性湍流的自组织和转变
  • 批准号:
    2308337
  • 财政年份:
    2023
  • 资助金额:
    $ 11.14万
  • 项目类别:
    Standard Grant
Collaborative Research: Explorations of Salt Finger Convection in the Extreme Oceanic Parameter Regime: An Asymptotic Modeling Approach.
合作研究:极端海洋参数体系中盐指对流的探索:渐近建模方法。
  • 批准号:
    2023541
  • 财政年份:
    2020
  • 资助金额:
    $ 11.14万
  • 项目类别:
    Standard Grant
Collaborative Research: Inverse Cascade Pathways in Turbulent Convection - The Impact of Spatial Anisotropy
合作研究:湍流对流中的逆级联路径 - 空间各向异性的影响
  • 批准号:
    2009563
  • 财政年份:
    2020
  • 资助金额:
    $ 11.14万
  • 项目类别:
    Standard Grant
Localized Structures in Spatially Extended Systems: Fronts and Defects
空间扩展系统中的局部结构:前沿和缺陷
  • 批准号:
    1908891
  • 财政年份:
    2019
  • 资助金额:
    $ 11.14万
  • 项目类别:
    Continuing Grant
Spatial Localization in Several Dimensions
多维空间定位
  • 批准号:
    1613132
  • 财政年份:
    2016
  • 资助金额:
    $ 11.14万
  • 项目类别:
    Standard Grant
Collaborative Research: Formation, properties and evolution of protoplanetary vortices: Multiscale Investigations of baroclinic Instability
合作研究:原行星涡旋的形成、性质和演化:斜压不稳定性的多尺度研究
  • 批准号:
    1317596
  • 财政年份:
    2013
  • 资助金额:
    $ 11.14万
  • 项目类别:
    Standard Grant
Spatially Localized Structures in Higher Dimension
高维空间局部结构
  • 批准号:
    1211953
  • 财政年份:
    2012
  • 资助金额:
    $ 11.14万
  • 项目类别:
    Standard Grant
Collaborative Research: Evolution Systems On Time-Dependent Domains: Study Of Dynamics, Stability, And Coarsening
协作研究:瞬态域上的进化系统:动力学、稳定性和粗化研究
  • 批准号:
    1233692
  • 财政年份:
    2012
  • 资助金额:
    $ 11.14万
  • 项目类别:
    Standard Grant
Spatially Localized States in Extended Systems
扩展系统中的空间局部状态
  • 批准号:
    0908102
  • 财政年份:
    2009
  • 资助金额:
    $ 11.14万
  • 项目类别:
    Continuing Grant
Formation and Properties of Spatially Localized States
空间局域态的形成和性质
  • 批准号:
    0605238
  • 财政年份:
    2006
  • 资助金额:
    $ 11.14万
  • 项目类别:
    Standard Grant

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 11.14万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 11.14万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 11.14万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 11.14万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 11.14万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    $ 11.14万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2403764
  • 财政年份:
    2023
  • 资助金额:
    $ 11.14万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    $ 11.14万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245097
  • 财政年份:
    2023
  • 资助金额:
    $ 11.14万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245147
  • 财政年份:
    2023
  • 资助金额:
    $ 11.14万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了