Spatially Localized Structures in Higher Dimension
高维空间局部结构
基本信息
- 批准号:1211953
- 负责人:
- 金额:$ 34.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-01 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This is a proposal to study spatially localized structures in driven dissipative systems. Such structures are characterized by a balance between energy input through suitable forcing and energy dissipation within the structure, and are common in many physical systems including fluids, nonlinear optics and reaction-diffusion equations. This proposal seeks to extend existing understanding of these structures to two and three spatial dimensions through mathematical analysis of global bifurcations in spatially reversible systems together with numerical continuation techniques. Systems with both variational and nonvariational structure will be studied, with a focus on understanding the growth and multiplicity of stationary or moving structures as parameters are varied. Time-dependent localized structures will be studied through analysis of the bulk state and the motion of the front or boundary that confines it. Collisions between moving structures and their trapping by external inhomogeneities will be investigated by direct numerical simulation. The results will be applied to several systems exhibiting thermally driven motion including binary fluid convection, doubly diffusive convection and rotating convection.Spatially localized structures are common in physical systems. Familiar examples in fluids include localized convection, vortices, liquid drops and solitary waves. Additional examples are provided by spots in optical and chemical systems, localized buckling of slender structures under compression, pulses propagating along neural fibers and localized oscillations in vibrating granular media. Although these examples reach across many areas of the physical sciences the localized structures that appear have many properties in common. This proposal seeks to develop a mathematical understanding of the origin and properties of such structures focusing on changes that take place as the parameters of the system change, and aims to identify the properties that are shared by these different examples.
这是一个研究驱动耗散系统中空间局域结构的建议。这种结构的特征在于通过适当的强制和结构内的能量耗散的能量输入之间的平衡,并且在包括流体、非线性光学和反应扩散方程的许多物理系统中是常见的。该建议旨在通过对空间可逆系统中全局分叉的数学分析以及数值延拓技术,将现有对这些结构的理解扩展到二维和三维空间。将研究变分和非变分结构的系统,重点是了解参数变化时静止或运动结构的增长和多重性。 时间相关的局域化结构将通过分析体态和限制它的前沿或边界的运动来研究。运动结构之间的碰撞和它们被外部不均匀性捕获将通过直接数值模拟来研究。本文的结果将应用于几个表现出热驱动运动的系统,包括二元流体对流、双扩散对流和旋转对流。流体中常见的例子包括局部对流、涡旋、液滴和孤立波。另外的例子是光学和化学系统中的斑点,压缩下细长结构的局部屈曲,沿沿着神经纤维传播的脉冲和振动颗粒介质中的局部振荡。虽然这些例子涉及物理科学的许多领域,但出现的局部结构有许多共同的性质。该提案旨在发展对这种结构的起源和性质的数学理解,重点是随着系统参数的变化而发生的变化,并旨在确定这些不同例子所共有的性质。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edgar Knobloch其他文献
Eckhaus instability and homoclinic snaking.
艾克豪斯不稳定性和同宿蛇行。
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
A. Bergeon;John P. Burke;Edgar Knobloch;I. Mercader - 通讯作者:
I. Mercader
Solitary dynamo waves
- DOI:
10.1016/j.physleta.2006.02.013 - 发表时间:
2006-06-26 - 期刊:
- 影响因子:
- 作者:
Joanne Mason;Edgar Knobloch - 通讯作者:
Edgar Knobloch
OPEN PROBLEM: Spatially localized structures in dissipative systems: open problems
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:1.7
- 作者:
Edgar Knobloch - 通讯作者:
Edgar Knobloch
Relaxation oscillations in a nearly inviscid Faraday system
- DOI:
10.1007/s00162-004-0144-2 - 发表时间:
2004-11-01 - 期刊:
- 影响因子:2.800
- 作者:
María Higuera;Edgar Knobloch;José M. Vega - 通讯作者:
José M. Vega
Spatially localized magnetoconvection
空间局部磁对流
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
D. L. Jacono;A. Bergeon;Edgar Knobloch - 通讯作者:
Edgar Knobloch
Edgar Knobloch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edgar Knobloch', 18)}}的其他基金
Collaborative Research: Self-organization and transitions in anisotropic turbulence
合作研究:各向异性湍流的自组织和转变
- 批准号:
2308337 - 财政年份:2023
- 资助金额:
$ 34.74万 - 项目类别:
Standard Grant
Collaborative Research: Explorations of Salt Finger Convection in the Extreme Oceanic Parameter Regime: An Asymptotic Modeling Approach.
合作研究:极端海洋参数体系中盐指对流的探索:渐近建模方法。
- 批准号:
2023541 - 财政年份:2020
- 资助金额:
$ 34.74万 - 项目类别:
Standard Grant
Collaborative Research: Inverse Cascade Pathways in Turbulent Convection - The Impact of Spatial Anisotropy
合作研究:湍流对流中的逆级联路径 - 空间各向异性的影响
- 批准号:
2009563 - 财政年份:2020
- 资助金额:
$ 34.74万 - 项目类别:
Standard Grant
Localized Structures in Spatially Extended Systems: Fronts and Defects
空间扩展系统中的局部结构:前沿和缺陷
- 批准号:
1908891 - 财政年份:2019
- 资助金额:
$ 34.74万 - 项目类别:
Continuing Grant
Spatial Localization in Several Dimensions
多维空间定位
- 批准号:
1613132 - 财政年份:2016
- 资助金额:
$ 34.74万 - 项目类别:
Standard Grant
Collaborative Research: Formation, properties and evolution of protoplanetary vortices: Multiscale Investigations of baroclinic Instability
合作研究:原行星涡旋的形成、性质和演化:斜压不稳定性的多尺度研究
- 批准号:
1317596 - 财政年份:2013
- 资助金额:
$ 34.74万 - 项目类别:
Standard Grant
Collaborative Research: Evolution Systems On Time-Dependent Domains: Study Of Dynamics, Stability, And Coarsening
协作研究:瞬态域上的进化系统:动力学、稳定性和粗化研究
- 批准号:
1233692 - 财政年份:2012
- 资助金额:
$ 34.74万 - 项目类别:
Standard Grant
Spatially Localized States in Extended Systems
扩展系统中的空间局部状态
- 批准号:
0908102 - 财政年份:2009
- 资助金额:
$ 34.74万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Models of Balanced Multiscale Ocean Physics for Simulation and Parameterization
FRG:协作研究:用于模拟和参数化的平衡多尺度海洋物理模型
- 批准号:
0854841 - 财政年份:2009
- 资助金额:
$ 34.74万 - 项目类别:
Standard Grant
Formation and Properties of Spatially Localized States
空间局域态的形成和性质
- 批准号:
0605238 - 财政年份:2006
- 资助金额:
$ 34.74万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Dust Entrainment Processes by Convective Vortices and Localized Turbulent Structures: Experimental and Numerical Study
合作研究:对流涡旋和局部湍流结构的粉尘夹带过程:实验和数值研究
- 批准号:
2207115 - 财政年份:2022
- 资助金额:
$ 34.74万 - 项目类别:
Standard Grant
Collaborative Research: Dust Entrainment Processes by Convective Vortices and Localized Turbulent Structures: Experimental and Numerical Study
合作研究:对流涡旋和局部湍流结构的粉尘夹带过程:实验和数值研究
- 批准号:
2207026 - 财政年份:2022
- 资助金额:
$ 34.74万 - 项目类别:
Standard Grant
Topological generation of spatially localized states by continuous deformation of structures
通过结构的连续变形拓扑生成空间局部状态
- 批准号:
20K14374 - 财政年份:2020
- 资助金额:
$ 34.74万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Localized Structures in Spatially Extended Systems: Fronts and Defects
空间扩展系统中的局部结构:前沿和缺陷
- 批准号:
1908891 - 财政年份:2019
- 资助金额:
$ 34.74万 - 项目类别:
Continuing Grant
Nano-defect super-resolution measurement of next-generation micro-functional structures using localized optical fields with dynamic phase control
使用具有动态相位控制的局部光场对下一代微功能结构进行纳米缺陷超分辨率测量
- 批准号:
19H02036 - 财政年份:2019
- 资助金额:
$ 34.74万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Localized structures on reaction-diffusion networks
反应扩散网络上的局部结构
- 批准号:
19K20357 - 财政年份:2019
- 资助金额:
$ 34.74万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Multi-scale interactions in plasma turbulence from viewpoints of localized structures and their parity
从局域结构及其宇称角度看等离子体湍流的多尺度相互作用
- 批准号:
17K14424 - 财政年份:2017
- 资助金额:
$ 34.74万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Development of method for the control of localized modes in semiconductor nanorod array structures and their applications
半导体纳米棒阵列结构局域模控制方法的发展及其应用
- 批准号:
17K05016 - 财政年份:2017
- 资助金额:
$ 34.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigation on condensed and conjugated structures localized in maclomolar chains of lignin derivatives using photo-excited energy and electron transfers
利用光激发能量和电子转移研究木质素衍生物大分子链中的缩合和共轭结构
- 批准号:
17K07880 - 财政年份:2017
- 资助金额:
$ 34.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Localized electronic states of defect structures in graphene
石墨烯缺陷结构的局域电子态
- 批准号:
17K04971 - 财政年份:2017
- 资助金额:
$ 34.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)