Spatially Localized States in Extended Systems
扩展系统中的空间局部状态
基本信息
- 批准号:0908102
- 负责人:
- 金额:$ 26.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-15 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Spatially localized structures are common in continuum systems such as fluids, nonlinear optics and the chemical reactions arising in catalysis. Examples are provided by localized convection, spots in optical and chemical systems, localized buckling of slender structures under compression, pulses propagating along neural fibers, oscillons in vibrating granular media, liquid drops, and solitary waves on flowing liquid films. These diverse systems have two things in common: (i) they are dissipative systems driven by homogeneous forcing, and (ii) there is range of forcing within which the application of different finiteamplitude perturbations can lead to distinct localized states. This proposal seeks to extend existing theory, partly developed by the PI and coworkers, to higher dimensions and to provide a comprehensive understanding of the effects of finite domain size, anisotropy and loss of translation invariance on the origin and properties of these structures. The techniques used include bifurcation theory for reversible and near-reversible systems, coupled with numerical branch-following and direct numerical simulations of realistic systems.Many systems respond to spatially uniform forcing by producing a spatial pattern. These patterns may take the form of a periodic array of cells or spots, or in particular cases by producing a single spot or group of spots. This proposal seeks to understand the relation between these two types of response, and to predict the conditions under which the latter response may be expected. There are many potential applications of a spot-like response. In optics individual spots may be "written" and "erased" using a laser beam, a procedure that may be used to store information. Mechanical structures often buckle in a localized way. Thin liquid films may break up into drops. A chemical process that uses catalysis may be degraded because the chemical conversion fails to proceed uniformly in space. These are all examples of spatially localized structures of the type that will be studied as part of this project. These spot-like structures may also move and interact. Such moving structures are involved, for example, in signaling along nerve fibers. The project seeks to predict the formation of these structures and to understand their basic properties.
空间局域结构在流体、非线性光学和催化过程中的化学反应等连续体系中很常见。 例如局部对流、光学和化学系统中的斑点、压缩下细长结构的局部屈曲、沿沿着神经纤维传播的脉冲、振动颗粒介质中的微扰子、液滴和流动液膜上的孤立波。这些不同的系统有两个共同点:(i)它们是由均匀强迫驱动的耗散系统,(ii)有一个强迫范围,在这个范围内,应用不同的有限振幅扰动可以导致不同的局域态。该提案旨在将部分由PI及其同事开发的现有理论扩展到更高维度,并全面了解有限域尺寸、各向异性和平移不变性损失对这些结构的起源和性质的影响。所使用的技术包括可逆和近可逆系统的分叉理论,再加上数值分支跟踪和直接数值模拟的现实systems.Many系统响应空间均匀强迫产生的空间模式。这些图案可以采取单元或斑点的周期性阵列的形式,或者在特定情况下通过产生单个斑点或斑点组。本建议旨在了解这两种类型的反应之间的关系,并预测后一种反应可能出现的条件。类似斑点的反应有许多潜在的应用。在光学中,可以使用激光束来“写入”和“擦除”单个光斑,这是一种可以用于存储信息的过程。机械结构经常以局部方式屈曲。薄的液膜可以破裂成液滴。使用催化剂的化学过程可能会退化,因为化学转化在空间中不能均匀地进行。这些都是空间局部结构的类型,将作为本项目的一部分进行研究的例子。这些点状结构也可以移动和相互作用。例如,这种移动的结构参与了沿着神经纤维的信号传递。该项目旨在预测这些结构的形成,并了解它们的基本性质。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edgar Knobloch其他文献
Eckhaus instability and homoclinic snaking.
艾克豪斯不稳定性和同宿蛇行。
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
A. Bergeon;John P. Burke;Edgar Knobloch;I. Mercader - 通讯作者:
I. Mercader
Solitary dynamo waves
- DOI:
10.1016/j.physleta.2006.02.013 - 发表时间:
2006-06-26 - 期刊:
- 影响因子:
- 作者:
Joanne Mason;Edgar Knobloch - 通讯作者:
Edgar Knobloch
OPEN PROBLEM: Spatially localized structures in dissipative systems: open problems
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:1.7
- 作者:
Edgar Knobloch - 通讯作者:
Edgar Knobloch
Relaxation oscillations in a nearly inviscid Faraday system
- DOI:
10.1007/s00162-004-0144-2 - 发表时间:
2004-11-01 - 期刊:
- 影响因子:2.800
- 作者:
María Higuera;Edgar Knobloch;José M. Vega - 通讯作者:
José M. Vega
Spatially localized magnetoconvection
空间局部磁对流
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
D. L. Jacono;A. Bergeon;Edgar Knobloch - 通讯作者:
Edgar Knobloch
Edgar Knobloch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edgar Knobloch', 18)}}的其他基金
Collaborative Research: Self-organization and transitions in anisotropic turbulence
合作研究:各向异性湍流的自组织和转变
- 批准号:
2308337 - 财政年份:2023
- 资助金额:
$ 26.17万 - 项目类别:
Standard Grant
Collaborative Research: Explorations of Salt Finger Convection in the Extreme Oceanic Parameter Regime: An Asymptotic Modeling Approach.
合作研究:极端海洋参数体系中盐指对流的探索:渐近建模方法。
- 批准号:
2023541 - 财政年份:2020
- 资助金额:
$ 26.17万 - 项目类别:
Standard Grant
Collaborative Research: Inverse Cascade Pathways in Turbulent Convection - The Impact of Spatial Anisotropy
合作研究:湍流对流中的逆级联路径 - 空间各向异性的影响
- 批准号:
2009563 - 财政年份:2020
- 资助金额:
$ 26.17万 - 项目类别:
Standard Grant
Localized Structures in Spatially Extended Systems: Fronts and Defects
空间扩展系统中的局部结构:前沿和缺陷
- 批准号:
1908891 - 财政年份:2019
- 资助金额:
$ 26.17万 - 项目类别:
Continuing Grant
Spatial Localization in Several Dimensions
多维空间定位
- 批准号:
1613132 - 财政年份:2016
- 资助金额:
$ 26.17万 - 项目类别:
Standard Grant
Collaborative Research: Formation, properties and evolution of protoplanetary vortices: Multiscale Investigations of baroclinic Instability
合作研究:原行星涡旋的形成、性质和演化:斜压不稳定性的多尺度研究
- 批准号:
1317596 - 财政年份:2013
- 资助金额:
$ 26.17万 - 项目类别:
Standard Grant
Spatially Localized Structures in Higher Dimension
高维空间局部结构
- 批准号:
1211953 - 财政年份:2012
- 资助金额:
$ 26.17万 - 项目类别:
Standard Grant
Collaborative Research: Evolution Systems On Time-Dependent Domains: Study Of Dynamics, Stability, And Coarsening
协作研究:瞬态域上的进化系统:动力学、稳定性和粗化研究
- 批准号:
1233692 - 财政年份:2012
- 资助金额:
$ 26.17万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Models of Balanced Multiscale Ocean Physics for Simulation and Parameterization
FRG:协作研究:用于模拟和参数化的平衡多尺度海洋物理模型
- 批准号:
0854841 - 财政年份:2009
- 资助金额:
$ 26.17万 - 项目类别:
Standard Grant
Formation and Properties of Spatially Localized States
空间局域态的形成和性质
- 批准号:
0605238 - 财政年份:2006
- 资助金额:
$ 26.17万 - 项目类别:
Standard Grant
相似海外基金
Topological generation of spatially localized states by continuous deformation of structures
通过结构的连续变形拓扑生成空间局部状态
- 批准号:
20K14374 - 财政年份:2020
- 资助金额:
$ 26.17万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of High Efficiency Photovoltaic Cells Using Electron Localized States in Dilute Nitride Semiconductors
利用稀氮化物半导体中的电子局域态开发高效光伏电池
- 批准号:
19H02612 - 财政年份:2019
- 资助金额:
$ 26.17万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Spatially localized states in the Zhang-Vinals equation
张-维纳尔斯方程中的空间局域态
- 批准号:
1947722 - 财政年份:2017
- 资助金额:
$ 26.17万 - 项目类别:
Studentship
Localized electronic states of defect structures in graphene
石墨烯缺陷结构的局域电子态
- 批准号:
17K04971 - 财政年份:2017
- 资助金额:
$ 26.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Chemical states of localized Fe atoms in hydrides by in-beam Mossbauer spectroscopy
通过束内穆斯堡尔光谱研究氢化物中局域 Fe 原子的化学态
- 批准号:
16K05012 - 财政年份:2016
- 资助金额:
$ 26.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
RUI: Quantum Transport Dynamics with Ultracold Atoms: Localized versus Extended States
RUI:超冷原子的量子输运动力学:局域态与扩展态
- 批准号:
0970012 - 财政年份:2010
- 资助金额:
$ 26.17万 - 项目类别:
Continuing Grant
Localized states and thermoelectric properties of vacancy-containing Sn-based clathrate compounds
含空位Sn基笼形化合物的定域态和热电性能
- 批准号:
22560698 - 财政年份:2010
- 资助金额:
$ 26.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Rydberg States in Localized Ensembles
局部系综中的里德伯态
- 批准号:
0855521 - 财政年份:2009
- 资助金额:
$ 26.17万 - 项目类别:
Continuing Grant
Collaborative Research: Study of the Relationship between Regionally Localized and Zonally Symmetric Anomalously Persistent Weather States
合作研究:区域局域性和纬向对称异常持续天气状态之间的关系研究
- 批准号:
0852459 - 财政年份:2009
- 资助金额:
$ 26.17万 - 项目类别:
Standard Grant
Energy spectrum of Eu localized states in the PbEuTe solid solution in the middle and far infrared region
PbEuTe固溶体中Eu局域态中远红外区能谱
- 批准号:
120400930 - 财政年份:2009
- 资助金额:
$ 26.17万 - 项目类别:
Research Grants