Localized Structures in Spatially Extended Systems: Fronts and Defects
空间扩展系统中的局部结构:前沿和缺陷
基本信息
- 批准号:1908891
- 负责人:
- 金额:$ 42.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-15 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Spatially localized structures such as fronts, defects, spots or pulses are common in many continuum systems, and include pulses propagating along nerve fibers, dissipative solitons in optical and chemical systems, localized buckling of slender structures under compression, and oscillons in vibrating granular media. Examples from fluids include localized convection, vortices and drops. These diverse systems have two things in common: (i) they are dissipative systems driven by spatially uniform forcing, and (ii) there is range of forcing within which the application of different finite amplitude perturbations can lead to distinct localized states. The investigator seeks to extend existing theory in new directions, focusing on problems arising in materials science such as the nucleation and growth of crystals from a supercooled liquid, and the ordered and disordered structures that may result. These include structures with short-range order but no long-range order called quasicrystals. The type of structure that forms in turn determines the strength and other properties of the resulting material and this depends strongly on the speed of the crystallization process. The aim of the project is to provide a comprehensive understanding of the mechanisms behind the different types of growth that take place at different temperatures of the liquid both in this and in related systems. Two postdoctoral students are engaged in the research of the project.In this project the investigator and his colleagues study the properties of spatially localized structures in two and three dimensions. Both conserved and nonconserved systems are considered with a focus on phase field and dynamical density functional theory models of soft matter crystallization from a supercooled melt. Depending on the speed of this process, the resulting material may be crystalline, amorphous, or a quasicrystal. Localized structures of each type may serve as critical nuclei for the nucleation of the crystal and are therefore of particular interest. The project focuses on the properties of these structures, and the properties of the fronts that separate them from the melt. Both steady and propagating fronts are considered and the processes that determine the propagation speed are studied in detail. These include pinning of fronts to the microstructure behind them and the interaction with the conserved mass mode. The project also includes a parallel study of traveling pulses in nonconserved systems and a detailed study of different types of defects where pinning to microstructure is important. The techniques used by the investigator include bifurcation theory, coupled with numerical branch-following and direct numerical simulations of realistic systems. Two postdoctoral students are engaged in the research of the project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在许多连续介质系统中,诸如前沿、缺陷、斑点或脉冲的空间局部化结构是常见的,并且包括沿沿着神经纤维传播的脉冲、光学和化学系统中的耗散孤子、压缩下细长结构的局部屈曲以及振动颗粒介质中的耗散孤子。 流体的例子包括局部对流、涡流和液滴。 这些不同的系统有两个共同点:(i)它们是由空间均匀强迫驱动的耗散系统,以及(ii)存在一定范围的强迫,在该范围内应用不同的有限振幅扰动可以导致不同的局域态。 研究人员寻求将现有理论扩展到新的方向,重点关注材料科学中出现的问题,例如过冷液体中晶体的成核和生长,以及可能产生的有序和无序结构。 这些包括具有短程有序但没有长程有序的结构,称为准晶。 形成的结构类型反过来又决定了所得材料的强度和其他性能,这在很大程度上取决于结晶过程的速度。 该项目的目的是提供一个全面的了解背后的机制,发生在不同温度的液体在这个和相关的系统中的不同类型的增长。 本项目由两名博士后研究生参与,主要研究二维和三维空间局域结构的性质。 保守和非保守系统被认为是重点相场和动力学密度泛函理论模型的软物质结晶从过冷熔体。 取决于该过程的速度,所得到的材料可以是晶体、非晶或准晶体。 每种类型的局部化结构都可以作为晶体成核的临界核,因此特别令人感兴趣。 该项目的重点是这些结构的性质,以及将它们与熔体分离的前沿的性质。 考虑了稳定锋和传播锋,并详细研究了决定传播速度的过程。 这些包括钉扎的前面的微观结构背后,并与守恒质量模式的相互作用。 该项目还包括在非保守系统中并行研究行进脉冲,并详细研究不同类型的缺陷,其中钉扎到微观结构是重要的。 研究人员使用的技术包括分叉理论,再加上数值分支以下和直接数值模拟的现实系统。 该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stationary peaks in a multivariable reaction–diffusion system: foliated snaking due to subcritical Turing instability
- DOI:10.1093/imamat/hxab029
- 发表时间:2020-07
- 期刊:
- 影响因子:1.2
- 作者:E. Knobloch;A. Yochelis
- 通讯作者:E. Knobloch;A. Yochelis
Pressure-driven wrinkling of soft inner-lined tubes
软质内衬管的压力驱动起皱
- DOI:10.1088/1367-2630/ac45cd
- 发表时间:2022
- 期刊:
- 影响因子:3.3
- 作者:Foster, Benjamin;Verschueren, Nicolás;Knobloch, Edgar;Gordillo, Leonardo
- 通讯作者:Gordillo, Leonardo
Universal Wrinkling of Supported Elastic Rings
支撑弹性环的普遍起皱
- DOI:10.1103/physrevlett.129.164301
- 发表时间:2022
- 期刊:
- 影响因子:8.6
- 作者:Foster, Benjamin;Verschueren, Nicolás;Knobloch, Edgar;Gordillo, Leonardo
- 通讯作者:Gordillo, Leonardo
Localized states in passive and active phase-field-crystal models
- DOI:10.1093/imamat/hxab025
- 发表时间:2020-10
- 期刊:
- 影响因子:1.2
- 作者:Max Philipp Holl;A. Archer;S. Gurevich;E. Knobloch;Lukas Ophaus;U. Thiele
- 通讯作者:Max Philipp Holl;A. Archer;S. Gurevich;E. Knobloch;Lukas Ophaus;U. Thiele
Localized patterns and semi-strong interaction, a unifying framework for reaction–diffusion systems
- DOI:10.1093/imamat/hxab036
- 发表时间:2021-08
- 期刊:
- 影响因子:1.2
- 作者:F. Saadi;A. Champneys;N. Verschueren
- 通讯作者:F. Saadi;A. Champneys;N. Verschueren
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edgar Knobloch其他文献
Eckhaus instability and homoclinic snaking.
艾克豪斯不稳定性和同宿蛇行。
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
A. Bergeon;John P. Burke;Edgar Knobloch;I. Mercader - 通讯作者:
I. Mercader
Solitary dynamo waves
- DOI:
10.1016/j.physleta.2006.02.013 - 发表时间:
2006-06-26 - 期刊:
- 影响因子:
- 作者:
Joanne Mason;Edgar Knobloch - 通讯作者:
Edgar Knobloch
OPEN PROBLEM: Spatially localized structures in dissipative systems: open problems
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:1.7
- 作者:
Edgar Knobloch - 通讯作者:
Edgar Knobloch
Relaxation oscillations in a nearly inviscid Faraday system
- DOI:
10.1007/s00162-004-0144-2 - 发表时间:
2004-11-01 - 期刊:
- 影响因子:2.800
- 作者:
María Higuera;Edgar Knobloch;José M. Vega - 通讯作者:
José M. Vega
Spatially localized magnetoconvection
空间局部磁对流
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
D. L. Jacono;A. Bergeon;Edgar Knobloch - 通讯作者:
Edgar Knobloch
Edgar Knobloch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edgar Knobloch', 18)}}的其他基金
Collaborative Research: Self-organization and transitions in anisotropic turbulence
合作研究:各向异性湍流的自组织和转变
- 批准号:
2308337 - 财政年份:2023
- 资助金额:
$ 42.55万 - 项目类别:
Standard Grant
Collaborative Research: Explorations of Salt Finger Convection in the Extreme Oceanic Parameter Regime: An Asymptotic Modeling Approach.
合作研究:极端海洋参数体系中盐指对流的探索:渐近建模方法。
- 批准号:
2023541 - 财政年份:2020
- 资助金额:
$ 42.55万 - 项目类别:
Standard Grant
Collaborative Research: Inverse Cascade Pathways in Turbulent Convection - The Impact of Spatial Anisotropy
合作研究:湍流对流中的逆级联路径 - 空间各向异性的影响
- 批准号:
2009563 - 财政年份:2020
- 资助金额:
$ 42.55万 - 项目类别:
Standard Grant
Spatial Localization in Several Dimensions
多维空间定位
- 批准号:
1613132 - 财政年份:2016
- 资助金额:
$ 42.55万 - 项目类别:
Standard Grant
Collaborative Research: Formation, properties and evolution of protoplanetary vortices: Multiscale Investigations of baroclinic Instability
合作研究:原行星涡旋的形成、性质和演化:斜压不稳定性的多尺度研究
- 批准号:
1317596 - 财政年份:2013
- 资助金额:
$ 42.55万 - 项目类别:
Standard Grant
Spatially Localized Structures in Higher Dimension
高维空间局部结构
- 批准号:
1211953 - 财政年份:2012
- 资助金额:
$ 42.55万 - 项目类别:
Standard Grant
Collaborative Research: Evolution Systems On Time-Dependent Domains: Study Of Dynamics, Stability, And Coarsening
协作研究:瞬态域上的进化系统:动力学、稳定性和粗化研究
- 批准号:
1233692 - 财政年份:2012
- 资助金额:
$ 42.55万 - 项目类别:
Standard Grant
Spatially Localized States in Extended Systems
扩展系统中的空间局部状态
- 批准号:
0908102 - 财政年份:2009
- 资助金额:
$ 42.55万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Models of Balanced Multiscale Ocean Physics for Simulation and Parameterization
FRG:协作研究:用于模拟和参数化的平衡多尺度海洋物理模型
- 批准号:
0854841 - 财政年份:2009
- 资助金额:
$ 42.55万 - 项目类别:
Standard Grant
Formation and Properties of Spatially Localized States
空间局域态的形成和性质
- 批准号:
0605238 - 财政年份:2006
- 资助金额:
$ 42.55万 - 项目类别:
Standard Grant
相似海外基金
Topological generation of spatially localized states by continuous deformation of structures
通过结构的连续变形拓扑生成空间局部状态
- 批准号:
20K14374 - 财政年份:2020
- 资助金额:
$ 42.55万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Diffractive optical surfaces with spatially variable structures angle
具有空间可变结构角度的衍射光学表面
- 批准号:
257419907 - 财政年份:2014
- 资助金额:
$ 42.55万 - 项目类别:
Research Grants
Hierarchical structures and robustness for the set of global solution branches of spatially localized patterns in dissipative systems
耗散系统中空间局部模式的全局解分支集的层次结构和鲁棒性
- 批准号:
26247015 - 财政年份:2014
- 资助金额:
$ 42.55万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Engineering Complex, Spatially-patterned Tissue Structures from Stem Cells
利用干细胞工程设计复杂的空间图案组织结构
- 批准号:
1417134 - 财政年份:2013
- 资助金额:
$ 42.55万 - 项目类别:
Standard Grant
Numerical and experimental study of pounding damage of adjacent bridge structures to spatially varying earthquake ground motions
相邻桥梁结构对空间变化地震地面运动冲击损伤的数值与试验研究
- 批准号:
LP110200906 - 财政年份:2012
- 资助金额:
$ 42.55万 - 项目类别:
Linkage Projects
Engineering Complex, Spatially-patterned Tissue Structures from Stem Cells
利用干细胞工程设计复杂的空间图案组织结构
- 批准号:
1159326 - 财政年份:2012
- 资助金额:
$ 42.55万 - 项目类别:
Standard Grant
Spatially Localized Structures in Higher Dimension
高维空间局部结构
- 批准号:
1211953 - 财政年份:2012
- 资助金额:
$ 42.55万 - 项目类别:
Standard Grant
Excitonic states in spatially confined molecular structures
空间受限分子结构中的激子态
- 批准号:
220480386 - 财政年份:2012
- 资助金额:
$ 42.55万 - 项目类别:
Research Units
Interval nonlinear analysis of spatially curved structures with material and geometric uncertainties.
具有材料和几何不确定性的空间弯曲结构的区间非线性分析。
- 批准号:
DP1097096 - 财政年份:2010
- 资助金额:
$ 42.55万 - 项目类别:
Discovery Projects
SBIR Phase I: Spatially selective metallization of microfabricated 3D structures and lines using Multiphoton Polymerization (MPP) for optical, photonic and electrical micro-systems
SBIR 第一阶段:使用多光子聚合 (MPP) 对光学、光子和电气微系统进行微加工 3D 结构和线条的空间选择性金属化
- 批准号:
0638055 - 财政年份:2007
- 资助金额:
$ 42.55万 - 项目类别:
Standard Grant














{{item.name}}会员




