Formation and Properties of Spatially Localized States
空间局域态的形成和性质
基本信息
- 批准号:0605238
- 负责人:
- 金额:$ 23.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-08-01 至 2009-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal ID: 0605238PI: Edgar KnoblochInstitution: University of California, BerkeleyTitle: Formation and Properties of Spatially Localized StatesAbstractThis is a proposal to study the formation and stability properties of spatially localized states in one and two spatial dimensions. Such states can be viewed in terms of homoclinic or heteroclinic connections in phase space, with one spatial coordinate playing the role of time. In many cases the presence of such states is related to a phemenon called homoclinic snaking. In this proposal we shall investigate different mechanisms leading to the formation of spatially localized structures and their stability with respect to both one and two-dimensional perturbations. The study will employ the techniques of spatial dynamics for reversible systems coupled with detailed numerics, and will focus on several fourth order partial differential equations of importance in the physical sciences. The theory will be extended to systems in which reversibility is weakly broken.This proposal focuses on the origin and properties of spatially localized structures in partial differential equations of importance in the physical sciences. Such structures are observed in experiments in optics, ferrofluids in a uniform magnetic field and in convection, and take the form of isolated bumps in an otherwise uniform background, or a front connecting two different uniform states. Spatially localized oscillations, called oscillons, are observed in vibrating granular media and in chemical reactions. Techniques will be developed to explain the origin of these states, and their stability properties. The theory will be extended to study the formation of related states in systems placed on a slight incline.
提案ID:0605238 PI:埃德加诺布洛奇机构:加州大学伯克利分校题目:空间局域态的形成和性质摘要这是一个研究一维和二维空间局域态的形成和稳定性的建议。这样的状态可以被看作是相空间中的同宿或异宿连接,其中一个空间坐标扮演时间的角色。在许多情况下,这种状态的存在与一种叫做同宿蛇形的现象有关。在这个建议中,我们将调查不同的机制,导致形成的空间局域化结构和它们的稳定性方面的一个和两个维的扰动。这项研究将采用可逆系统的空间动力学技术,再加上详细的数值,并将集中在几个四阶偏微分方程的重要性,在物理科学。该理论将被扩展到可逆性弱破缺的系统中。该建议侧重于物理科学中重要的偏微分方程中空间局域结构的起源和性质。这种结构在光学实验、均匀磁场中的铁磁流体和对流中观察到,并且在其他均匀背景中采取孤立凸起的形式,或者连接两个不同均匀状态的前面。 空间局域振荡,称为微扰子,在振动的颗粒介质和化学反应中观察到。技术将被开发来解释这些状态的起源,以及它们的稳定性。该理论将被扩展到研究系统中的相关状态的形成放在一个轻微的倾斜。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edgar Knobloch其他文献
Eckhaus instability and homoclinic snaking.
艾克豪斯不稳定性和同宿蛇行。
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
A. Bergeon;John P. Burke;Edgar Knobloch;I. Mercader - 通讯作者:
I. Mercader
Solitary dynamo waves
- DOI:
10.1016/j.physleta.2006.02.013 - 发表时间:
2006-06-26 - 期刊:
- 影响因子:
- 作者:
Joanne Mason;Edgar Knobloch - 通讯作者:
Edgar Knobloch
OPEN PROBLEM: Spatially localized structures in dissipative systems: open problems
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:1.7
- 作者:
Edgar Knobloch - 通讯作者:
Edgar Knobloch
Relaxation oscillations in a nearly inviscid Faraday system
- DOI:
10.1007/s00162-004-0144-2 - 发表时间:
2004-11-01 - 期刊:
- 影响因子:2.800
- 作者:
María Higuera;Edgar Knobloch;José M. Vega - 通讯作者:
José M. Vega
Spatially localized magnetoconvection
空间局部磁对流
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
D. L. Jacono;A. Bergeon;Edgar Knobloch - 通讯作者:
Edgar Knobloch
Edgar Knobloch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edgar Knobloch', 18)}}的其他基金
Collaborative Research: Self-organization and transitions in anisotropic turbulence
合作研究:各向异性湍流的自组织和转变
- 批准号:
2308337 - 财政年份:2023
- 资助金额:
$ 23.06万 - 项目类别:
Standard Grant
Collaborative Research: Explorations of Salt Finger Convection in the Extreme Oceanic Parameter Regime: An Asymptotic Modeling Approach.
合作研究:极端海洋参数体系中盐指对流的探索:渐近建模方法。
- 批准号:
2023541 - 财政年份:2020
- 资助金额:
$ 23.06万 - 项目类别:
Standard Grant
Collaborative Research: Inverse Cascade Pathways in Turbulent Convection - The Impact of Spatial Anisotropy
合作研究:湍流对流中的逆级联路径 - 空间各向异性的影响
- 批准号:
2009563 - 财政年份:2020
- 资助金额:
$ 23.06万 - 项目类别:
Standard Grant
Localized Structures in Spatially Extended Systems: Fronts and Defects
空间扩展系统中的局部结构:前沿和缺陷
- 批准号:
1908891 - 财政年份:2019
- 资助金额:
$ 23.06万 - 项目类别:
Continuing Grant
Spatial Localization in Several Dimensions
多维空间定位
- 批准号:
1613132 - 财政年份:2016
- 资助金额:
$ 23.06万 - 项目类别:
Standard Grant
Collaborative Research: Formation, properties and evolution of protoplanetary vortices: Multiscale Investigations of baroclinic Instability
合作研究:原行星涡旋的形成、性质和演化:斜压不稳定性的多尺度研究
- 批准号:
1317596 - 财政年份:2013
- 资助金额:
$ 23.06万 - 项目类别:
Standard Grant
Spatially Localized Structures in Higher Dimension
高维空间局部结构
- 批准号:
1211953 - 财政年份:2012
- 资助金额:
$ 23.06万 - 项目类别:
Standard Grant
Collaborative Research: Evolution Systems On Time-Dependent Domains: Study Of Dynamics, Stability, And Coarsening
协作研究:瞬态域上的进化系统:动力学、稳定性和粗化研究
- 批准号:
1233692 - 财政年份:2012
- 资助金额:
$ 23.06万 - 项目类别:
Standard Grant
Spatially Localized States in Extended Systems
扩展系统中的空间局部状态
- 批准号:
0908102 - 财政年份:2009
- 资助金额:
$ 23.06万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Models of Balanced Multiscale Ocean Physics for Simulation and Parameterization
FRG:协作研究:用于模拟和参数化的平衡多尺度海洋物理模型
- 批准号:
0854841 - 财政年份:2009
- 资助金额:
$ 23.06万 - 项目类别:
Standard Grant
相似海外基金
Optical properties control of advanced functional nanomaterials using spatially selective chemical reactions
利用空间选择性化学反应控制先进功能纳米材料的光学性质
- 批准号:
22K19013 - 财政年份:2022
- 资助金额:
$ 23.06万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Linking Matrix Composition with Spatially Resolved Mechanical Properties in Polymicrobial Biofilms
将基质组成与多微生物生物膜中的空间分辨机械特性联系起来
- 批准号:
2100447 - 财政年份:2021
- 资助金额:
$ 23.06万 - 项目类别:
Standard Grant
Analysis of the interactions between the morphology and the properties of weld seams during laser transmission welding of plastics by a three-dimensional, spatially re-solved determination of the crystallinity of the weld seam by means of Raman microscopy
通过拉曼显微镜对焊缝结晶度进行三维空间分辨率测定,分析塑料激光透射焊接过程中焊缝形态和性能之间的相互作用
- 批准号:
399619237 - 财政年份:2018
- 资助金额:
$ 23.06万 - 项目类别:
Research Grants
Antifouling surfaces with spatially alternating interfacial properties
具有空间交替界面特性的防污表面
- 批准号:
403577877 - 财政年份:2018
- 资助金额:
$ 23.06万 - 项目类别:
Research Grants
Optical properties of super-widegap semiconductors studied by time and spatially resolved deep-ultraviolet spectroscopy
通过时间和空间分辨深紫外光谱研究超宽带隙半导体的光学性质
- 批准号:
17H04810 - 财政年份:2017
- 资助金额:
$ 23.06万 - 项目类别:
Grant-in-Aid for Young Scientists (A)
EAGER: Optical Coherence Elastography (OCE): A novel tool for rapid, nondestructive, spatially resolved quantification of mesoscale biofilm mechanical properties
EAGER:光学相干弹性成像 (OCE):一种快速、无损、空间分辨量化中尺度生物膜机械性能的新型工具
- 批准号:
1701105 - 财政年份:2017
- 资助金额:
$ 23.06万 - 项目类别:
Standard Grant
Study of spin-orbit coupling effects on superconducting and superfluid properties in spatially inhomogeneous enviroments
空间非均匀环境中自旋轨道耦合对超导和超流体特性的影响研究
- 批准号:
25800194 - 财政年份:2013
- 资助金额:
$ 23.06万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Discovery Corps Postdoctoral Fellowship: Spatially-Dependent Evolution of the Electronic Properties of Organic Photovoltaic Systems And Marketing Based-Education in Seattle
探索队博士后奖学金:有机光伏系统电子特性的空间依赖性演化以及西雅图的基于营销的教育
- 批准号:
0725139 - 财政年份:2007
- 资助金额:
$ 23.06万 - 项目类别:
Standard Grant
A Longitudinal Study of the Development of Primary Students' Knowledge About the Properties of Spatially-Oriented Diagrams in Mathematics
小学生数学空间定向图性质知识发展的追踪研究
- 批准号:
ARC : DP0211864 - 财政年份:2002
- 资助金额:
$ 23.06万 - 项目类别:
Discovery Projects
A Longitudinal Study of the Development of Primary Students' Knowledge About the Properties of Spatially-Oriented Diagrams in Mathematics
小学生数学空间定向图性质知识发展的追踪研究
- 批准号:
DP0211864 - 财政年份:2002
- 资助金额:
$ 23.06万 - 项目类别:
Discovery Projects