Multiscale, Beamlet-Based Data Processing for the Solution of Shortest-Path Problems with Applications to Embedded Vehicle Autonomy
用于解决嵌入式车辆自主应用中最短路径问题的多尺度、基于子束的数据处理
基本信息
- 批准号:0856565
- 负责人:
- 金额:$ 18.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-15 至 2011-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research objective of this award is to apply multiresolution analysis ideas for path- and motion planning of autonomous vehicles. Special basis functions are used to efficiently encode all possible paths inside the environment the vehicle operates in. The key idea behind the approach is the fact that paths have lower dimensionality than the ambient space, and hence, a more efficient encoding of the problem data than standard 2D and 3D cell decompositions is possible. The main mathematical tool used is beamlets, whose unique properties capture directionality, in addition to scale and locality. The result is reduced computational complexity algorithms for embedded control systems. Deliverables include new software to encode obstacles in the environment, demonstration and validation of the approach via numerical simulations, documentation of research results in peer-reviewed publications and via presentations at national and international conference, and engineering student education.If successful, the results will allow the reduction of current dynamic-programming based search algorithms by an order of magnitude, thus allowing increased levels of intelligence for a large class of small-scale vehicles and systems encountered in aerospace, military, and industrial application, which must operate at the limits of their performance envelope (e.g., unmanned aerial vehicles, high-speed autonomous wheeled vehicles, robots, etc), and which have limited on-board computational resources. The proposed line encoding scheme may lead to new sensors with built-in capability of automatic image edge detection, promoting the state-of-the-art in image processing technology. By leveraging established partnerships with local industry, the results will be transitioned to commercial autonomous (primarily aerial) vehicles. Graduate and undergraduate students will benefit from the results of this research through classroom instruction and through their involvement in the proposed research activities.
该奖项的研究目标是将多分辨率分析思想应用于自动驾驶汽车的路径和运动规划。 特殊的基函数用于有效地编码车辆运行环境内的所有可能路径。该方法背后的关键思想是路径具有比周围空间更低的维度,因此,比标准的2D和3D单元分解更有效的问题数据编码是可能的。所使用的主要数学工具是细光束,其独特的属性捕获方向性,除了规模和位置。其结果是降低了嵌入式控制系统的计算复杂度算法。这些成果包括对环境中的障碍物进行编码的新软件、通过数值模拟对方法进行演示和验证、在同行评审的出版物中记录研究结果以及在国家和国际会议上进行演示,以及工程专业学生教育。如果成功,这些成果将使当前基于动态编程的搜索算法减少一个数量级,从而允许在航空航天、军事和工业应用中遇到的大量小型飞行器和系统的智能水平提高,这些飞行器和系统必须在其性能范围的极限下操作(例如,无人驾驶飞行器、高速自主轮式车辆、机器人等),并且其具有有限的机载计算资源。所提出的线编码方案可能导致具有自动图像边缘检测能力的新传感器,促进图像处理技术的发展。通过利用与当地行业建立的合作伙伴关系,其成果将过渡到商业自动驾驶(主要是空中)车辆。 研究生和本科生将通过课堂教学和参与拟议的研究活动从这项研究的结果中受益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Panagiotis Tsiotras其他文献
Communication-Aware Map Compression for Online Path-Planning
用于在线路径规划的通信感知地图压缩
- DOI:
10.48550/arxiv.2309.13451 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Evangelos Psomiadis;Dipankar Maity;Panagiotis Tsiotras - 通讯作者:
Panagiotis Tsiotras
Multi-Parameter Dependent Lyapunov Functions for the Stability Analysis of Parameter-Dependent LTI Systems
用于参数相关 LTI 系统稳定性分析的多参数相关 Lyapunov 函数
- DOI:
10.1109/.2005.1467197 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
X. Zhang;Panagiotis Tsiotras;P. Bliman - 通讯作者:
P. Bliman
Zero-Sum Games Between Large-Population Heterogeneous Teams: A Reachability-based Analysis under Mean-Field Sharing
大规模异构团队之间的零和博弈:平均场共享下基于可达性的分析
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Yue Guan;Mohammad Afshari;Panagiotis Tsiotras - 通讯作者:
Panagiotis Tsiotras
Time-Optimal Control of Axisymmetric Rigid Spacecraft Using Two Controls
轴对称刚性航天器的两种控制的时间最优控制
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Haijun Shen;Panagiotis Tsiotras - 通讯作者:
Panagiotis Tsiotras
Stabilization and Tracking of Underactuated Axisymmetric Spacecraft with Bounded Control
- DOI:
10.1016/s1474-6670(17)40326-0 - 发表时间:
1998-07-01 - 期刊:
- 影响因子:
- 作者:
Panagiotis Tsiotras;Jihao Luo - 通讯作者:
Jihao Luo
Panagiotis Tsiotras的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Panagiotis Tsiotras', 18)}}的其他基金
CPS: Medium: Learning-Enabled Assistive Driving: Formal Assurances during Operation and Training
CPS:中:支持学习的辅助驾驶:操作和培训期间的正式保证
- 批准号:
2219755 - 财政年份:2022
- 资助金额:
$ 18.5万 - 项目类别:
Standard Grant
AstroSLAM - A Robust and Reliable Visual Localization and Pose Estimation Architecture for Space Robots in Orbit
AstroSLAM - 用于轨道空间机器人的稳健可靠的视觉定位和姿态估计架构
- 批准号:
2101250 - 财政年份:2021
- 资助金额:
$ 18.5万 - 项目类别:
Standard Grant
RI: Small: Robust Autonomy for Uncertain Systems using Randomized Trees
RI:小型:使用随机树实现不确定系统的鲁棒自治
- 批准号:
2008686 - 财政年份:2020
- 资助金额:
$ 18.5万 - 项目类别:
Continuing Grant
S&AS: FND: Decision-Making for Autonomous Systems with Limited Resources
S
- 批准号:
1849130 - 财政年份:2019
- 资助金额:
$ 18.5万 - 项目类别:
Standard Grant
Safe, Resilient and Efficient Operation of Autonomous Aerial and Ground Vehicles
自主空中和地面车辆的安全、弹性和高效运行
- 批准号:
1662542 - 财政年份:2017
- 资助金额:
$ 18.5万 - 项目类别:
Standard Grant
RI: Small: Incremental Sampling-Based Algorithms and Stochastic Optimal Control on Random Graphs
RI:小:基于增量采样的算法和随机图上的随机最优控制
- 批准号:
1617630 - 财政年份:2016
- 资助金额:
$ 18.5万 - 项目类别:
Continuing Grant
CPS: Synergy: Collaborative Research: Adaptive Intelligence for Cyber-Physical Automotive Active Safety - System Design and Evaluation
CPS:协同:协作研究:网络物理汽车主动安全的自适应智能 - 系统设计和评估
- 批准号:
1544814 - 财政年份:2015
- 资助金额:
$ 18.5万 - 项目类别:
Standard Grant
NRI: Information-Theoretic Trajectory Optimization for Motion Planning and Control with Applications to Space Proximity Operations
NRI:运动规划和控制的信息理论轨迹优化及其在空间邻近操作中的应用
- 批准号:
1426945 - 财政年份:2014
- 资助金额:
$ 18.5万 - 项目类别:
Standard Grant
Environment-Agent Interaction in Autonomous Networked Teams with Applications to Minimum-Time Coordinated Control of Multi-Agent Systems
自治网络团队中的环境-智能体交互及其在多智能体系统最短时间协调控制中的应用
- 批准号:
1160780 - 财政年份:2012
- 资助金额:
$ 18.5万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Advanced Driver Assistance and Active Safety Systems through Driver's Controllability Augmentation and Adaptation
GOALI/合作研究:通过驾驶员可控性增强和适应实现高级驾驶员辅助和主动安全系统
- 批准号:
1234286 - 财政年份:2012
- 资助金额:
$ 18.5万 - 项目类别:
Standard Grant
相似国自然基金
Beamlet变换及其在SAR图像边缘检测中的应用
- 批准号:60472072
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目