RI: Small: Robust Autonomy for Uncertain Systems using Randomized Trees

RI:小型:使用随机树实现不确定系统的鲁棒自治

基本信息

  • 批准号:
    2008686
  • 负责人:
  • 金额:
    $ 44.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

In recent years, a true revolution is taking place, in the way intelligent machines and robots operate in new, previously unseen, environments and interact with human operators. While in the past robots were primarily found in industrial settings, nowadays autonomous and semi-autonomous robots and systems can be found almost everywhere. This new generation of intelligent autonomous systems will interact even more closely with humans and will help them in their daily lives whether this is work, leisure, and by taking care of many mundane domestic tasks. But world is a messy place. There is a huge difference between a robot operating inside an enclosed “cage” on a factory floor that repeats the same task over and over again, and a robot that needs to navigate in an office environment, in a hospital, or on the highway, where uncertainty and unpredictability dominate. This project will develop new algorithms that run inside the “brain” of these autonomous systems to enable them achieve optimal decision-making, thus increasing their reliability, predictability, performance, and fail-safe operation in the presence of uncertainty and under limited information. Self-driving vehicles, anthropomorphic robots, aerial drones, manufacturing automation systems, and precision surgical instruments among others, will all benefit from the results of this research. Although motivated by robot navigation problems, this project addresses a more fundamental problem in artificial intelligence and thus has a much broader applicability. All applications where a “minimum-energy” path is to be found, e.g., crack propagation in structures, protein folding, data retrieval in high-dimensional spaces, etc., will benefit from the results of this project.This project will leverage techniques from randomized graph representations and methodologies from stochastic optimal control theory, and will combine the two in novel ways, in order to mitigate uncertainty and unpredictability during planning and decision-making for high-dimensional autonomous robotic systems. The specific research activities to be undertaken in this project are: First, randomized graphs will be used to obtain efficient abstractions of the environment by avoiding non-scalable grid-based techniques, along with the application of new uncertainty propagation techniques developed by the investigator to solve efficiently planning problems in high-dimensional spaces. Second, optimal feedback strategies for stochastic systems will be developed by utilizing the recent theory of forward/backward stochastic differential equations, along with the incorporation of hierarchical and randomized approaches to better explore the search space. Finally, this project will take advantage of recent advances from Machine Learning (ML) and the use of prior experience gained during previous similar instances of the problem to expedite optimal search during runtime. The experimental validation of the theory will take place in the investigator’s lab and will involve both graduate and undergraduate students. The results of this research will be disseminated to the community by journal and conference publications and by securing summer internship opportunities for the students to transition the results of their work to real-life engineering problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
近年来,一场真正的革命正在发生,智能机器和机器人在新的、以前看不见的环境中运行,并与人类操作员互动。过去,机器人主要出现在工业环境中,而现在,几乎到处都可以找到自主和半自主机器人和系统。新一代的智能自主系统将与人类进行更密切的互动,并将帮助他们在日常生活中,无论是工作,休闲还是处理许多日常家务。但世界是一个混乱的地方。在工厂车间的封闭“笼子”内操作的机器人与需要在办公室环境、医院或高速公路上导航的机器人之间存在巨大差异,不确定性和不可预测性占主导地位。该项目将开发在这些自主系统的“大脑”内部运行的新算法,使它们能够实现最佳决策,从而提高其可靠性,可预测性,性能和在不确定性和有限信息下的故障安全操作。自动驾驶汽车、拟人机器人、无人机、制造自动化系统和精密手术器械等都将受益于这项研究的成果。虽然受到机器人导航问题的启发,但该项目解决了人工智能中更基本的问题,因此具有更广泛的适用性。所有需要找到“最小能量”路径的应用,例如,结构中的裂纹扩展、蛋白质折叠、高维空间中的数据检索等,将受益于该项目的结果。该项目将利用随机图表示技术和随机最优控制理论方法,并以新颖的方式将两者结合起来,以减轻规划过程中的不确定性和不可预测性。和决策的高维自主机器人系统。联合收割机。在这个项目中进行的具体研究活动是:首先,随机图将被用来获得有效的抽象环境,通过避免不可扩展的网格为基础的技术,沿着与新的不确定性传播技术的应用开发的研究人员,以有效地解决规划问题,在高维空间。第二,随机系统的最佳反馈策略将开发利用最近的前向/后向随机微分方程理论,沿着的分层和随机的方法,以更好地探索搜索空间。最后,该项目将利用机器学习(ML)的最新进展,并利用以前类似问题实例中获得的经验,加快运行时的最佳搜索。该理论的实验验证将在研究人员的实验室进行,并将涉及研究生和本科生。这项研究的结果将通过期刊和会议出版物向社区传播,并为学生提供暑期实习机会,将他们的工作成果转化为现实生活中的工程问题。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Class-Ordered LPA: An Incremental-Search Algorithm for Weighted Colored Graphs
类序 LPA:加权彩色图的增量搜索算法
On the Time Discretization of the Feynman-Kac Forward-Backward Stochastic Differential Equations for Value Function Approximation
Belief Space Planning: a Covariance Steering Approach
置信空间规划:协方差引导方法
  • DOI:
    10.1109/icra46639.2022.9811560
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zheng, Dongliang;Ridderhof, Jack;Tsiotras, Panagiotis;Agha-mohammadi, Ali-akbar
  • 通讯作者:
    Agha-mohammadi, Ali-akbar
Lazy Lifelong Planning for Efficient Replanning in Graphs with Expensive Edge Evaluation
惰性终生规划,用于在具有昂贵边缘评估的图中进行高效重新规划
  • DOI:
    10.1109/iros47612.2022.9981389
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lim, Jaein;Srinivasa, Siddhartha;Tsiotras, Panagiotis
  • 通讯作者:
    Tsiotras, Panagiotis
TIE: Time-Informed Exploration for Robot Motion Planning
TIE:机器人运动规划的时间信息探索
  • DOI:
    10.1109/lra.2021.3064255
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Joshi, Sagar Suhas;Hutchinson, Seth;Tsiotras, Panagiotis
  • 通讯作者:
    Tsiotras, Panagiotis
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Panagiotis Tsiotras其他文献

Communication-Aware Map Compression for Online Path-Planning
用于在线路径规划的通信感知地图压缩
  • DOI:
    10.48550/arxiv.2309.13451
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Evangelos Psomiadis;Dipankar Maity;Panagiotis Tsiotras
  • 通讯作者:
    Panagiotis Tsiotras
Multi-Parameter Dependent Lyapunov Functions for the Stability Analysis of Parameter-Dependent LTI Systems
用于参数相关 LTI 系统稳定性分析的多参数相关 Lyapunov 函数
Time-Optimal Control of Axisymmetric Rigid Spacecraft Using Two Controls
轴对称刚性航天器的两种控制的时间最优控制
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Haijun Shen;Panagiotis Tsiotras
  • 通讯作者:
    Panagiotis Tsiotras
Zero-Sum Games Between Large-Population Heterogeneous Teams: A Reachability-based Analysis under Mean-Field Sharing
大规模异构团队之间的零和博弈:平均场共享下基于可达性的分析
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yue Guan;Mohammad Afshari;Panagiotis Tsiotras
  • 通讯作者:
    Panagiotis Tsiotras
Stabilization and Tracking of Underactuated Axisymmetric Spacecraft with Bounded Control
  • DOI:
    10.1016/s1474-6670(17)40326-0
  • 发表时间:
    1998-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Panagiotis Tsiotras;Jihao Luo
  • 通讯作者:
    Jihao Luo

Panagiotis Tsiotras的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Panagiotis Tsiotras', 18)}}的其他基金

CPS: Medium: Learning-Enabled Assistive Driving: Formal Assurances during Operation and Training
CPS:中:支持学习的辅助驾驶:操作和培训期间的正式保证
  • 批准号:
    2219755
  • 财政年份:
    2022
  • 资助金额:
    $ 44.85万
  • 项目类别:
    Standard Grant
AstroSLAM - A Robust and Reliable Visual Localization and Pose Estimation Architecture for Space Robots in Orbit
AstroSLAM - 用于轨道空间机器人的稳健可靠的视觉定位和姿态估计架构
  • 批准号:
    2101250
  • 财政年份:
    2021
  • 资助金额:
    $ 44.85万
  • 项目类别:
    Standard Grant
S&AS: FND: Decision-Making for Autonomous Systems with Limited Resources
S
  • 批准号:
    1849130
  • 财政年份:
    2019
  • 资助金额:
    $ 44.85万
  • 项目类别:
    Standard Grant
Safe, Resilient and Efficient Operation of Autonomous Aerial and Ground Vehicles
自主空中和地面车辆的安全、弹性和高效运行
  • 批准号:
    1662542
  • 财政年份:
    2017
  • 资助金额:
    $ 44.85万
  • 项目类别:
    Standard Grant
RI: Small: Incremental Sampling-Based Algorithms and Stochastic Optimal Control on Random Graphs
RI:小:基于增量采样的算法和随机图上的随机最优控制
  • 批准号:
    1617630
  • 财政年份:
    2016
  • 资助金额:
    $ 44.85万
  • 项目类别:
    Continuing Grant
CPS: Synergy: Collaborative Research: Adaptive Intelligence for Cyber-Physical Automotive Active Safety - System Design and Evaluation
CPS:协同:协作研究:网络物理汽车主动安全的自适应智能 - 系统设计和评估
  • 批准号:
    1544814
  • 财政年份:
    2015
  • 资助金额:
    $ 44.85万
  • 项目类别:
    Standard Grant
NRI: Information-Theoretic Trajectory Optimization for Motion Planning and Control with Applications to Space Proximity Operations
NRI:运动规划和控制的信息理论轨迹优化及其在空间邻近操作中的应用
  • 批准号:
    1426945
  • 财政年份:
    2014
  • 资助金额:
    $ 44.85万
  • 项目类别:
    Standard Grant
Environment-Agent Interaction in Autonomous Networked Teams with Applications to Minimum-Time Coordinated Control of Multi-Agent Systems
自治网络团队中的环境-智能体交互及其在多智能体系统最短时间协调控制中的应用
  • 批准号:
    1160780
  • 财政年份:
    2012
  • 资助金额:
    $ 44.85万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Advanced Driver Assistance and Active Safety Systems through Driver's Controllability Augmentation and Adaptation
GOALI/合作研究:通过驾驶员可控性增强和适应实现高级驾驶员辅助和主动安全系统
  • 批准号:
    1234286
  • 财政年份:
    2012
  • 资助金额:
    $ 44.85万
  • 项目类别:
    Standard Grant
Multiscale, Beamlet-Based Data Processing for the Solution of Shortest-Path Problems with Applications to Embedded Vehicle Autonomy
用于解决嵌入式车辆自主应用中最短路径问题的多尺度、基于子束的数据处理
  • 批准号:
    0856565
  • 财政年份:
    2009
  • 资助金额:
    $ 44.85万
  • 项目类别:
    Standard Grant

相似国自然基金

昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
  • 批准号:
    32000033
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
  • 批准号:
    31972324
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
  • 批准号:
    81900988
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
  • 批准号:
    31870821
  • 批准年份:
    2018
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
  • 批准号:
    31802058
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
  • 批准号:
    31772128
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
  • 批准号:
    81704176
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
  • 批准号:
    91640114
  • 批准年份:
    2016
  • 资助金额:
    85.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

RI: Small: Toward Efficient and Robust Dynamic Scene Understanding Based on Visual Correspondences
RI:小:基于视觉对应的高效、鲁棒的动态场景理解
  • 批准号:
    2310254
  • 财政年份:
    2023
  • 资助金额:
    $ 44.85万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Robust Deep Learning with Big Imbalanced Data
合作研究:RI:小型:具有大不平衡数据的鲁棒深度学习
  • 批准号:
    2246756
  • 财政年份:
    2022
  • 资助金额:
    $ 44.85万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI: Small: Robust Deep Learning with Big Imbalanced Data
合作研究:RI:小型:具有大不平衡数据的鲁棒深度学习
  • 批准号:
    2110546
  • 财政年份:
    2021
  • 资助金额:
    $ 44.85万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI: Small: Robust Deep Learning with Big Imbalanced Data
合作研究:RI:小型:具有大不平衡数据的鲁棒深度学习
  • 批准号:
    2110545
  • 财政年份:
    2021
  • 资助金额:
    $ 44.85万
  • 项目类别:
    Continuing Grant
RI: Small: Speech-Centered Robust and Generalizable Measurements of "In the Wild" Behavior for Mental Health Symptom Severity Tracking
RI:小:以语音为中心的稳健且可概括的“野外”行为测量,用于心理健康症状严重程度跟踪
  • 批准号:
    2006618
  • 财政年份:
    2020
  • 资助金额:
    $ 44.85万
  • 项目类别:
    Standard Grant
RI: Small: Neural Sequences as a Robust Dynamic Regime for Spatiotemporal Time Invariant Computations.
RI:小:神经序列作为时空时不变计算的鲁棒动态机制。
  • 批准号:
    2008741
  • 财政年份:
    2020
  • 资助金额:
    $ 44.85万
  • 项目类别:
    Standard Grant
RI: Small: Domain-robust object detection through shape and context
RI:小:通过形状和上下文进行领域稳健的对象检测
  • 批准号:
    2006885
  • 财政年份:
    2020
  • 资助金额:
    $ 44.85万
  • 项目类别:
    Standard Grant
RI: SMALL: Robust Inference and Influence in Dynamic Environments
RI:小:动态环境中的鲁棒推理和影响
  • 批准号:
    1907907
  • 财政年份:
    2019
  • 资助金额:
    $ 44.85万
  • 项目类别:
    Standard Grant
AF: RI: Small: Barriers in Adversarially Robust Learning
AF:RI:小:对抗性鲁棒学习的障碍
  • 批准号:
    1910681
  • 财政年份:
    2019
  • 资助金额:
    $ 44.85万
  • 项目类别:
    Standard Grant
RI: Small: Robust Model-Based Identification, Navigation, and Control of Underactuated Underwater Vehicles
RI:小型:基于鲁棒模型的欠驱动水下航行器识别、导航和控制
  • 批准号:
    1909182
  • 财政年份:
    2019
  • 资助金额:
    $ 44.85万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了